气泡排序中的>与>= 会导致显著的性能差异
我只是偶然发现了一些东西。起初,我认为这可能是一个分支错误预测的情况,就像在这种情况下一样,但我无法解释为什么分支错误预测会导致这种行为。
我在Java中实现了两个版本的Bubble Sort,并做了一些性能测试:
import java.util.Random;
public class BubbleSortAnnomaly {
    public static void main(String... args) {
        final int ARRAY_SIZE = Integer.parseInt(args[0]);
        final int LIMIT = Integer.parseInt(args[1]);
        final int RUNS = Integer.parseInt(args[2]);
        int[] a = new int[ARRAY_SIZE];
        int[] b = new int[ARRAY_SIZE];
        Random r = new Random();
        for (int run = 0; RUNS > run; ++run) {
            for (int i = 0; i < ARRAY_SIZE; i++) {
                a[i] = r.nextInt(LIMIT);
                b[i] = a[i];
            }
            System.out.print("Sorting with sortA: ");
            long start = System.nanoTime();
            int swaps = bubbleSortA(a);
            System.out.println(  (System.nanoTime() - start) + " ns. "
                               + "It used " + swaps + " swaps.");
            System.out.print("Sorting with sortB: ");
            start = System.nanoTime();
            swaps = bubbleSortB(b);
            System.out.println(  (System.nanoTime() - start) + " ns. "
                               + "It used " + swaps + " swaps.");
        }
    }
    public static int bubbleSortA(int[] a) {
        int counter = 0;
        for (int i = a.length - 1; i >= 0; --i) {
            for (int j = 0; j < i; ++j) {
                if (a[j] > a[j + 1]) {
                    swap(a, j, j + 1);
                    ++counter;
                }
            }
        }
        return (counter);
    }
    public static int bubbleSortB(int[] a) {
        int counter = 0;
        for (int i = a.length - 1; i >= 0; --i) {
            for (int j = 0; j < i; ++j) {
                if (a[j] >= a[j + 1]) {
                    swap(a, j, j + 1);
                    ++counter;
                }
            }
        }
        return (counter);
    }
    private static void swap(int[] a, int j, int i) {
        int h = a[i];
        a[i] = a[j];
        a[j] = h;
    }
}
正如我们所看到的,这两种排序方法之间的唯一区别是 vs. 。当运行程序时,人们显然会期望它比因为它必须执行更多的s要慢。但我在三台不同的机器上得到了以下(或类似的)输出:>>=java BubbleSortAnnomaly 50000 10 10sortBsortAswap(...)
Sorting with sortA: 4.214 seconds. It used  564960211 swaps.
Sorting with sortB: 2.278 seconds. It used 1249750569 swaps.
Sorting with sortA: 4.199 seconds. It used  563355818 swaps.
Sorting with sortB: 2.254 seconds. It used 1249750348 swaps.
Sorting with sortA: 4.189 seconds. It used  560825110 swaps.
Sorting with sortB: 2.264 seconds. It used 1249749572 swaps.
Sorting with sortA: 4.17  seconds. It used  561924561 swaps.
Sorting with sortB: 2.256 seconds. It used 1249749766 swaps.
Sorting with sortA: 4.198 seconds. It used  562613693 swaps.
Sorting with sortB: 2.266 seconds. It used 1249749880 swaps.
Sorting with sortA: 4.19  seconds. It used  561658723 swaps.
Sorting with sortB: 2.281 seconds. It used 1249751070 swaps.
Sorting with sortA: 4.193 seconds. It used  564986461 swaps.
Sorting with sortB: 2.266 seconds. It used 1249749681 swaps.
Sorting with sortA: 4.203 seconds. It used  562526980 swaps.
Sorting with sortB: 2.27  seconds. It used 1249749609 swaps.
Sorting with sortA: 4.176 seconds. It used  561070571 swaps.
Sorting with sortB: 2.241 seconds. It used 1249749831 swaps.
Sorting with sortA: 4.191 seconds. It used  559883210 swaps.
Sorting with sortB: 2.257 seconds. It used 1249749371 swaps.
当我将参数设置为 to 时,例如 (),我得到预期的结果:LIMIT50000java BubbleSortAnnomaly 50000 50000 10
Sorting with sortA: 3.983 seconds. It used  625941897 swaps.
Sorting with sortB: 4.658 seconds. It used  789391382 swaps.
我将程序移植到C++以确定此问题是否特定于 Java。下面是C++代码。
#include <cstdlib>
#include <iostream>
#include <omp.h>
#ifndef ARRAY_SIZE
#define ARRAY_SIZE 50000
#endif
#ifndef LIMIT
#define LIMIT 10
#endif
#ifndef RUNS
#define RUNS 10
#endif
void swap(int * a, int i, int j)
{
    int h = a[i];
    a[i] = a[j];
    a[j] = h;
}
int bubbleSortA(int * a)
{
    const int LAST = ARRAY_SIZE - 1;
    int counter = 0;
    for (int i = LAST; 0 < i; --i)
    {
        for (int j = 0; j < i; ++j)
        {
            int next = j + 1;
            if (a[j] > a[next])
            {
                swap(a, j, next);
                ++counter;
            }
        }
    }
    return (counter);
}
int bubbleSortB(int * a)
{
    const int LAST = ARRAY_SIZE - 1;
    int counter = 0;
    for (int i = LAST; 0 < i; --i)
    {
        for (int j = 0; j < i; ++j)
        {
            int next = j + 1;
            if (a[j] >= a[next])
            {
                swap(a, j, next);
                ++counter;
            }
        }
    }
    return (counter);
}
int main()
{
    int * a = (int *) malloc(ARRAY_SIZE * sizeof(int));
    int * b = (int *) malloc(ARRAY_SIZE * sizeof(int));
    for (int run = 0; RUNS > run; ++run)
    {
        for (int idx = 0; ARRAY_SIZE > idx; ++idx)
        {
            a[idx] = std::rand() % LIMIT;
            b[idx] = a[idx];
        }
        std::cout << "Sorting with sortA: ";
        double start = omp_get_wtime();
        int swaps = bubbleSortA(a);
        std::cout << (omp_get_wtime() - start) << " seconds. It used " << swaps
                  << " swaps." << std::endl;
        std::cout << "Sorting with sortB: ";
        start = omp_get_wtime();
        swaps = bubbleSortB(b);
        std::cout << (omp_get_wtime() - start) << " seconds. It used " << swaps
                  << " swaps." << std::endl;
    }
    free(a);
    free(b);
    return (0);
}
此程序显示相同的行为。有人能解释一下这里到底发生了什么吗?
先执行,然后执行不会更改结果。sortBsortA