机器人实时获取声音频率?

2022-09-02 13:41:23

我一直在尝试使用fft实时获取声音频率(数字),并且遇到运行时错误。任何人都可以帮忙吗?

package com.example.recordsound;

import edu.emory.mathcs.jtransforms.fft.DoubleFFT_1D;

import ca.uol.aig.fftpack.RealDoubleFFT;

public class MainActivity extends Activity implements OnClickListener{

int audioSource = MediaRecorder.AudioSource.MIC;    // Audio source is the device MIC
int channelConfig = AudioFormat.CHANNEL_IN_MONO;    // Recording in mono
int audioEncoding = AudioFormat.ENCODING_PCM_16BIT; // Records in 16bit

private DoubleFFT_1D fft;                           // The fft double array
private RealDoubleFFT transformer;
int blockSize = 256;                               // deal with this many samples at a time
int sampleRate = 8000;                             // Sample rate in Hz
public double frequency = 0.0;                      // the frequency given

RecordAudio recordTask;                             // Creates a Record Audio command
TextView tv;                                        // Creates a text view for the frequency
boolean started = false;
Button startStopButton;
@Override
protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_main);
    tv = (TextView)findViewById(R.id.textView1);  
    startStopButton= (Button)findViewById(R.id.button1);
}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
    // Inflate the menu; this adds items to the action bar if it is present.
    getMenuInflater().inflate(R.menu.main, menu);
    return true;
}


private class RecordAudio extends AsyncTask<Void, Double, Void>{
    @Override
    protected Void doInBackground(Void... params){      

        /*Calculates the fft and frequency of the input*/
        //try{
            int bufferSize = AudioRecord.getMinBufferSize(sampleRate, channelConfig, audioEncoding);                // Gets the minimum buffer needed
            AudioRecord audioRecord = new AudioRecord(audioSource, sampleRate, channelConfig, audioEncoding, bufferSize);   // The RAW PCM sample recording



            short[] buffer = new short[blockSize];          // Save the raw PCM samples as short bytes

          //  double[] audioDataDoubles = new double[(blockSize*2)]; // Same values as above, as doubles
       //   ----------------------------------------------- 
            double[] re = new double[blockSize];
            double[] im = new double[blockSize];
            double[] magnitude = new double[blockSize];
       //   ----------------------------------------------------
            double[] toTransform = new double[blockSize];

            tv.setText("Hello");
           // fft = new DoubleFFT_1D(blockSize);


            try{
            audioRecord.startRecording();  //Start
            }catch(Throwable t){
                Log.e("AudioRecord", "Recording Failed");
            }

            while(started){
                /* Reads the data from the microphone. it takes in data 
                 * to the size of the window "blockSize". The data is then
                 * given in to audioRecord. The int returned is the number
                 * of bytes that were read*/

                int bufferReadResult = audioRecord.read(buffer, 0, blockSize);

                // Read in the data from the mic to the array
                for(int i = 0; i < blockSize && i < bufferReadResult; i++) {

                    /* dividing the short by 32768.0 gives us the 
                     * result in a range -1.0 to 1.0.
                     * Data for the compextForward is given back 
                     * as two numbers in sequence. Therefore audioDataDoubles
                     * needs to be twice as large*/

                   // audioDataDoubles[2*i] = (double) buffer[i]/32768.0; // signed 16 bit
                    //audioDataDoubles[(2*i)+1] = 0.0;
                    toTransform[i] = (double) buffer[i] / 32768.0; // signed 16 bit

                }

                //audiodataDoubles now holds data to work with
               // fft.complexForward(audioDataDoubles);
                transformer.ft(toTransform);
   //------------------------------------------------------------------------------------------
                // Calculate the Real and imaginary and Magnitude.
                for(int i = 0; i < blockSize; i++){
                    // real is stored in first part of array
                    re[i] = toTransform[i*2];
                    // imaginary is stored in the sequential part
                    im[i] = toTransform[(i*2)+1];
                    // magnitude is calculated by the square root of (imaginary^2 + real^2)
                    magnitude[i] = Math.sqrt((re[i] * re[i]) + (im[i]*im[i]));
                }

                double peak = -1.0;
                // Get the largest magnitude peak
                for(int i = 0; i < blockSize; i++){
                    if(peak < magnitude[i])
                        peak = magnitude[i];
                }
                // calculated the frequency
                frequency = (sampleRate * peak)/blockSize;
//----------------------------------------------------------------------------------------------
                /* calls onProgressUpdate
                 * publishes the frequency
                 */
                publishProgress(frequency);
                try{
                    audioRecord.stop();
                }
                catch(IllegalStateException e){
                    Log.e("Stop failed", e.toString());

                }
            }

    //    } 
        return null;
    }

    protected void onProgressUpdate(Double... frequencies){
        //print the frequency 
        String info = Double.toString(frequencies[0]);
        tv.setText(info);
    }

}

@Override
public void onClick(View v) {
    // TODO Auto-generated method stub
    if(started){
           started = false;
           startStopButton.setText("Start");
           recordTask.cancel(true);
       } else {
           started = true;
           startStopButton.setText("Stop");
           recordTask = new RecordAudio();
           recordTask.execute();
       }

}

}

一旦我用OnClick运行程序它就会崩溃,我尝试了两个fft库,但一次运行一个,看看库是否有效 一旦它到达我将块大小分配给FFT对象的行它就会崩溃


答案 1

试试这个FFT:

public class FFT {

  int n, m;

  // Lookup tables. Only need to recompute when size of FFT changes.
  double[] cos;
  double[] sin;

  public FFT(int n) {
      this.n = n;
      this.m = (int) (Math.log(n) / Math.log(2));

      // Make sure n is a power of 2
      if (n != (1 << m))
          throw new RuntimeException("FFT length must be power of 2");

      // precompute tables
      cos = new double[n / 2];
      sin = new double[n / 2];

      for (int i = 0; i < n / 2; i++) {
          cos[i] = Math.cos(-2 * Math.PI * i / n);
          sin[i] = Math.sin(-2 * Math.PI * i / n);
      }

  }

  public void fft(double[] x, double[] y) {
      int i, j, k, n1, n2, a;
      double c, s, t1, t2;

      // Bit-reverse
      j = 0;
      n2 = n / 2;
      for (i = 1; i < n - 1; i++) {
          n1 = n2;
          while (j >= n1) {
              j = j - n1;
              n1 = n1 / 2;
          }
          j = j + n1;

          if (i < j) {
              t1 = x[i];
              x[i] = x[j];
              x[j] = t1;
              t1 = y[i];
              y[i] = y[j];
              y[j] = t1;
          }
      }

      // FFT
      n1 = 0;
      n2 = 1;

      for (i = 0; i < m; i++) {
          n1 = n2;
          n2 = n2 + n2;
          a = 0;

          for (j = 0; j < n1; j++) {
              c = cos[a];
              s = sin[a];
              a += 1 << (m - i - 1);

              for (k = j; k < n; k = k + n2) {
                  t1 = c * x[k + n1] - s * y[k + n1];
                  t2 = s * x[k + n1] + c * y[k + n1];
                  x[k + n1] = x[k] - t1;
                  y[k + n1] = y[k] - t2;
                  x[k] = x[k] + t1;
                  y[k] = y[k] + t2;
              }
          }
      }
  }
}

它应该解决你的想法。如果您决定重新使用它,请给予作者适当的信任。

来源/作者:EricLarch


答案 2

如果您真的想执行实时音频分析,那么基于Java的方法将无法实现。我在2013年第四季度为我的公司做了类似的任务,我们决定使用Kiss FFT(也许是最简单的具有BSD许可证的FFT库),使用NDK为Android编译。

原生 C/C++方法比 Java 方法快很多倍。使用前者,我们已经能够在几乎所有中高端设备上执行实时音频解码音频功能分析,这在后者中显然是不可能的。

强烈建议您考虑将本机方法视为完成此任务的最佳选择。Kiss FFT是一个非常简单的库(字面意思是代表),在Android上编译和使用它时你不会遇到太多麻烦。您不会对性能结果感到失望。Keep It Simple FFT


推荐