HTML5 画布调整大小(降尺度)图像高质量?

2022-08-30 01:59:01

我使用html5画布元素来调整浏览器的图像大小。事实证明,质量非常低。我发现这个:在缩放<canvas时禁用插值>但它无助于提高质量。

以下是我的css和js代码,以及使用Photoshop进行缩放并在canvas API中缩放的图像。

在浏览器中缩放图像时,我必须执行哪些操作才能获得最佳质量?

注意:我想将大图像缩小到小图像,修改画布中的颜色,然后将画布中的结果发送到服务器。

CSS:

canvas, img {
    image-rendering: optimizeQuality;
    image-rendering: -moz-crisp-edges;
    image-rendering: -webkit-optimize-contrast;
    image-rendering: optimize-contrast;
    -ms-interpolation-mode: nearest-neighbor;
}

JS:

var $img = $('<img>');
var $originalCanvas = $('<canvas>');
$img.load(function() {


   var originalContext = $originalCanvas[0].getContext('2d');   
   originalContext.imageSmoothingEnabled = false;
   originalContext.webkitImageSmoothingEnabled = false;
   originalContext.mozImageSmoothingEnabled = false;
   originalContext.drawImage(this, 0, 0, 379, 500);
});

使用 photoshop 调整图像大小:

enter image description here

在画布上调整大小的图像:

enter image description here

编辑:

我试图在多个步骤中进行缩小,如以下建议:

在 HTML5 画布和 Html5 画布中调整图像大小图像:如何应用抗锯齿

这是我用过的函数:

function resizeCanvasImage(img, canvas, maxWidth, maxHeight) {
    var imgWidth = img.width, 
        imgHeight = img.height;

    var ratio = 1, ratio1 = 1, ratio2 = 1;
    ratio1 = maxWidth / imgWidth;
    ratio2 = maxHeight / imgHeight;

    // Use the smallest ratio that the image best fit into the maxWidth x maxHeight box.
    if (ratio1 < ratio2) {
        ratio = ratio1;
    }
    else {
        ratio = ratio2;
    }

    var canvasContext = canvas.getContext("2d");
    var canvasCopy = document.createElement("canvas");
    var copyContext = canvasCopy.getContext("2d");
    var canvasCopy2 = document.createElement("canvas");
    var copyContext2 = canvasCopy2.getContext("2d");
    canvasCopy.width = imgWidth;
    canvasCopy.height = imgHeight;  
    copyContext.drawImage(img, 0, 0);

    // init
    canvasCopy2.width = imgWidth;
    canvasCopy2.height = imgHeight;        
    copyContext2.drawImage(canvasCopy, 0, 0, canvasCopy.width, canvasCopy.height, 0, 0, canvasCopy2.width, canvasCopy2.height);


    var rounds = 2;
    var roundRatio = ratio * rounds;
    for (var i = 1; i <= rounds; i++) {
        console.log("Step: "+i);

        // tmp
        canvasCopy.width = imgWidth * roundRatio / i;
        canvasCopy.height = imgHeight * roundRatio / i;

        copyContext.drawImage(canvasCopy2, 0, 0, canvasCopy2.width, canvasCopy2.height, 0, 0, canvasCopy.width, canvasCopy.height);

        // copy back
        canvasCopy2.width = imgWidth * roundRatio / i;
        canvasCopy2.height = imgHeight * roundRatio / i;
        copyContext2.drawImage(canvasCopy, 0, 0, canvasCopy.width, canvasCopy.height, 0, 0, canvasCopy2.width, canvasCopy2.height);

    } // end for


    // copy back to canvas
    canvas.width = imgWidth * roundRatio / rounds;
    canvas.height = imgHeight * roundRatio / rounds;
    canvasContext.drawImage(canvasCopy2, 0, 0, canvasCopy2.width, canvasCopy2.height, 0, 0, canvas.width, canvas.height);


}

如果我使用2步缩小大小,则结果如下:

enter image description here

如果我使用3步缩小大小,则结果如下:

enter image description here

如果我使用4步缩小大小,则结果如下:

enter image description here

如果我使用20步缩小大小,则结果如下:

enter image description here

注意:事实证明,从1步到2步,图像质量有了很大的提高,但是您添加到过程中的步骤越多,图像就越模糊。

有没有办法解决图像越模糊的问题,你添加的步骤越多?

编辑 2013-10-04: 我尝试了 GameAlchemist 的算法。这是与Photoshop相比的结果。

照片商店图片:

PhotoShop Image

游戏化学家的算法:

GameAlchemist's Algorithm


答案 1

由于您的问题是缩小图像的尺寸,因此谈论插值(即创建像素)是没有意义的。这里的问题是缩减采样。

要对图像进行缩减采样,我们需要将原始图像中 p * p 像素的每个正方形转换为目标图像中的单个像素。

出于性能原因,浏览器会执行非常简单的缩减采样:要构建较小的图像,它们只会在源中选择一个像素并将其值用于目标。这“忘记”了一些细节并增加了噪音。

然而,有一个例外:由于2X图像缩减采样的计算非常简单(平均4个像素来制作一个),并且用于视网膜/ HiDPI像素,因此这种情况得到了适当的处理 - 浏览器确实使用4像素来制作一个 - 。

但。。。如果您多次使用2X缩减采样,您将面临连续舍入错误会增加太多噪音的问题。
更糟糕的是,您不会总是以2的幂调整大小,并且将大小调整为最接近的功率+最后一次调整大小非常嘈杂。

您寻求的是像素完美的缩减采样,即 :对图像进行重新采样,该图像将考虑所有输入像素 - 无论比例如何。
为此,我们必须为每个输入像素计算其对一个、两个或四个目标像素的贡献,具体取决于输入像素的缩放投影是否位于目标像素内,是否与 X 边框和/或 Y 边框重叠。
(一个方案在这里会很好,但我没有。

下面是一个画布比例与我的像素完美比例在僵尸的1/3比例上的例子。

请注意,图片可能会在浏览器中缩放,并由 S.O. .jpeg 化。
然而,我们看到噪音要小得多,特别是在袋熊后面的草地上,以及它右边的树枝上。皮毛中的噪点使它更具对比性,但看起来他有白色的毛发 - 与源图片不同 。
右图不那么吸引人,但肯定更好。

enter image description here

以下是执行像素完美缩小的代码:

小提琴结果:http://jsfiddle.net/gamealchemist/r6aVp/embedded/result/
小提琴本身:http://jsfiddle.net/gamealchemist/r6aVp/

// scales the image by (float) scale < 1
// returns a canvas containing the scaled image.
function downScaleImage(img, scale) {
    var imgCV = document.createElement('canvas');
    imgCV.width = img.width;
    imgCV.height = img.height;
    var imgCtx = imgCV.getContext('2d');
    imgCtx.drawImage(img, 0, 0);
    return downScaleCanvas(imgCV, scale);
}

// scales the canvas by (float) scale < 1
// returns a new canvas containing the scaled image.
function downScaleCanvas(cv, scale) {
    if (!(scale < 1) || !(scale > 0)) throw ('scale must be a positive number <1 ');
    var sqScale = scale * scale; // square scale = area of source pixel within target
    var sw = cv.width; // source image width
    var sh = cv.height; // source image height
    var tw = Math.floor(sw * scale); // target image width
    var th = Math.floor(sh * scale); // target image height
    var sx = 0, sy = 0, sIndex = 0; // source x,y, index within source array
    var tx = 0, ty = 0, yIndex = 0, tIndex = 0; // target x,y, x,y index within target array
    var tX = 0, tY = 0; // rounded tx, ty
    var w = 0, nw = 0, wx = 0, nwx = 0, wy = 0, nwy = 0; // weight / next weight x / y
    // weight is weight of current source point within target.
    // next weight is weight of current source point within next target's point.
    var crossX = false; // does scaled px cross its current px right border ?
    var crossY = false; // does scaled px cross its current px bottom border ?
    var sBuffer = cv.getContext('2d').
    getImageData(0, 0, sw, sh).data; // source buffer 8 bit rgba
    var tBuffer = new Float32Array(3 * tw * th); // target buffer Float32 rgb
    var sR = 0, sG = 0,  sB = 0; // source's current point r,g,b
    /* untested !
    var sA = 0;  //source alpha  */    

    for (sy = 0; sy < sh; sy++) {
        ty = sy * scale; // y src position within target
        tY = 0 | ty;     // rounded : target pixel's y
        yIndex = 3 * tY * tw;  // line index within target array
        crossY = (tY != (0 | ty + scale)); 
        if (crossY) { // if pixel is crossing botton target pixel
            wy = (tY + 1 - ty); // weight of point within target pixel
            nwy = (ty + scale - tY - 1); // ... within y+1 target pixel
        }
        for (sx = 0; sx < sw; sx++, sIndex += 4) {
            tx = sx * scale; // x src position within target
            tX = 0 |  tx;    // rounded : target pixel's x
            tIndex = yIndex + tX * 3; // target pixel index within target array
            crossX = (tX != (0 | tx + scale));
            if (crossX) { // if pixel is crossing target pixel's right
                wx = (tX + 1 - tx); // weight of point within target pixel
                nwx = (tx + scale - tX - 1); // ... within x+1 target pixel
            }
            sR = sBuffer[sIndex    ];   // retrieving r,g,b for curr src px.
            sG = sBuffer[sIndex + 1];
            sB = sBuffer[sIndex + 2];

            /* !! untested : handling alpha !!
               sA = sBuffer[sIndex + 3];
               if (!sA) continue;
               if (sA != 0xFF) {
                   sR = (sR * sA) >> 8;  // or use /256 instead ??
                   sG = (sG * sA) >> 8;
                   sB = (sB * sA) >> 8;
               }
            */
            if (!crossX && !crossY) { // pixel does not cross
                // just add components weighted by squared scale.
                tBuffer[tIndex    ] += sR * sqScale;
                tBuffer[tIndex + 1] += sG * sqScale;
                tBuffer[tIndex + 2] += sB * sqScale;
            } else if (crossX && !crossY) { // cross on X only
                w = wx * scale;
                // add weighted component for current px
                tBuffer[tIndex    ] += sR * w;
                tBuffer[tIndex + 1] += sG * w;
                tBuffer[tIndex + 2] += sB * w;
                // add weighted component for next (tX+1) px                
                nw = nwx * scale
                tBuffer[tIndex + 3] += sR * nw;
                tBuffer[tIndex + 4] += sG * nw;
                tBuffer[tIndex + 5] += sB * nw;
            } else if (crossY && !crossX) { // cross on Y only
                w = wy * scale;
                // add weighted component for current px
                tBuffer[tIndex    ] += sR * w;
                tBuffer[tIndex + 1] += sG * w;
                tBuffer[tIndex + 2] += sB * w;
                // add weighted component for next (tY+1) px                
                nw = nwy * scale
                tBuffer[tIndex + 3 * tw    ] += sR * nw;
                tBuffer[tIndex + 3 * tw + 1] += sG * nw;
                tBuffer[tIndex + 3 * tw + 2] += sB * nw;
            } else { // crosses both x and y : four target points involved
                // add weighted component for current px
                w = wx * wy;
                tBuffer[tIndex    ] += sR * w;
                tBuffer[tIndex + 1] += sG * w;
                tBuffer[tIndex + 2] += sB * w;
                // for tX + 1; tY px
                nw = nwx * wy;
                tBuffer[tIndex + 3] += sR * nw;
                tBuffer[tIndex + 4] += sG * nw;
                tBuffer[tIndex + 5] += sB * nw;
                // for tX ; tY + 1 px
                nw = wx * nwy;
                tBuffer[tIndex + 3 * tw    ] += sR * nw;
                tBuffer[tIndex + 3 * tw + 1] += sG * nw;
                tBuffer[tIndex + 3 * tw + 2] += sB * nw;
                // for tX + 1 ; tY +1 px
                nw = nwx * nwy;
                tBuffer[tIndex + 3 * tw + 3] += sR * nw;
                tBuffer[tIndex + 3 * tw + 4] += sG * nw;
                tBuffer[tIndex + 3 * tw + 5] += sB * nw;
            }
        } // end for sx 
    } // end for sy

    // create result canvas
    var resCV = document.createElement('canvas');
    resCV.width = tw;
    resCV.height = th;
    var resCtx = resCV.getContext('2d');
    var imgRes = resCtx.getImageData(0, 0, tw, th);
    var tByteBuffer = imgRes.data;
    // convert float32 array into a UInt8Clamped Array
    var pxIndex = 0; //  
    for (sIndex = 0, tIndex = 0; pxIndex < tw * th; sIndex += 3, tIndex += 4, pxIndex++) {
        tByteBuffer[tIndex] = Math.ceil(tBuffer[sIndex]);
        tByteBuffer[tIndex + 1] = Math.ceil(tBuffer[sIndex + 1]);
        tByteBuffer[tIndex + 2] = Math.ceil(tBuffer[sIndex + 2]);
        tByteBuffer[tIndex + 3] = 255;
    }
    // writing result to canvas.
    resCtx.putImageData(imgRes, 0, 0);
    return resCV;
}

这是非常内存贪婪的,因为需要一个浮点缓冲区来存储目标图像的中间值(->如果我们计算结果画布,我们在此算法中使用6倍于源图像的内存)。
它也非常昂贵,因为无论目标大小如何,每个源像素都被使用,并且我们必须为getImageData / putImageDate付费,也相当慢。
但是在这种情况下,没有办法比处理每个源值更快,而且情况也不是那么糟糕 :对于我的740 * 556袋熊图像,处理需要30到40毫秒。


答案 2

快速画布重新采样,质量好:http://jsfiddle.net/9g9Nv/442/

更新:版本 2.0(速度更快,Web 工作线程 + 可转移对象)- https://github.com/viliusle/Hermite-resize

/**
 * Hermite resize - fast image resize/resample using Hermite filter. 1 cpu version!
 * 
 * @param {HtmlElement} canvas
 * @param {int} width
 * @param {int} height
 * @param {boolean} resize_canvas if true, canvas will be resized. Optional.
 */
function resample_single(canvas, width, height, resize_canvas) {
    var width_source = canvas.width;
    var height_source = canvas.height;
    width = Math.round(width);
    height = Math.round(height);

    var ratio_w = width_source / width;
    var ratio_h = height_source / height;
    var ratio_w_half = Math.ceil(ratio_w / 2);
    var ratio_h_half = Math.ceil(ratio_h / 2);

    var ctx = canvas.getContext("2d");
    var img = ctx.getImageData(0, 0, width_source, height_source);
    var img2 = ctx.createImageData(width, height);
    var data = img.data;
    var data2 = img2.data;

    for (var j = 0; j < height; j++) {
        for (var i = 0; i < width; i++) {
            var x2 = (i + j * width) * 4;
            var weight = 0;
            var weights = 0;
            var weights_alpha = 0;
            var gx_r = 0;
            var gx_g = 0;
            var gx_b = 0;
            var gx_a = 0;
            var center_y = (j + 0.5) * ratio_h;
            var yy_start = Math.floor(j * ratio_h);
            var yy_stop = Math.ceil((j + 1) * ratio_h);
            for (var yy = yy_start; yy < yy_stop; yy++) {
                var dy = Math.abs(center_y - (yy + 0.5)) / ratio_h_half;
                var center_x = (i + 0.5) * ratio_w;
                var w0 = dy * dy; //pre-calc part of w
                var xx_start = Math.floor(i * ratio_w);
                var xx_stop = Math.ceil((i + 1) * ratio_w);
                for (var xx = xx_start; xx < xx_stop; xx++) {
                    var dx = Math.abs(center_x - (xx + 0.5)) / ratio_w_half;
                    var w = Math.sqrt(w0 + dx * dx);
                    if (w >= 1) {
                        //pixel too far
                        continue;
                    }
                    //hermite filter
                    weight = 2 * w * w * w - 3 * w * w + 1;
                    var pos_x = 4 * (xx + yy * width_source);
                    //alpha
                    gx_a += weight * data[pos_x + 3];
                    weights_alpha += weight;
                    //colors
                    if (data[pos_x + 3] < 255)
                        weight = weight * data[pos_x + 3] / 250;
                    gx_r += weight * data[pos_x];
                    gx_g += weight * data[pos_x + 1];
                    gx_b += weight * data[pos_x + 2];
                    weights += weight;
                }
            }
            data2[x2] = gx_r / weights;
            data2[x2 + 1] = gx_g / weights;
            data2[x2 + 2] = gx_b / weights;
            data2[x2 + 3] = gx_a / weights_alpha;
        }
    }
    //clear and resize canvas
    if (resize_canvas === true) {
        canvas.width = width;
        canvas.height = height;
    } else {
        ctx.clearRect(0, 0, width_source, height_source);
    }

    //draw
    ctx.putImageData(img2, 0, 0);
}