鼻子回答..
duplicates=false;
for (j=0;j<zipcodeList.length;j++)
for (k=j+1;k<zipcodeList.length;k++)
if (k!=j && zipcodeList[k] == zipcodeList[j])
duplicates=true;
编辑以切换回,因为我读到您正在使用的地方,这在最初的问题中并不清楚。还要设置 ,将执行时间减半,但它仍然是 O(n2)。.equals()
==
int
k=j+1
更快(在极限内)的方式
下面是一种基于哈希的方法。你必须为自动装箱付费,但它是O(n)而不是O(n2)。一个有进取心的灵魂会去找一个原始的基于int的哈希集(我认为Apache或Google Collections有这样的东西。
boolean duplicates(final int[] zipcodelist)
{
Set<Integer> lump = new HashSet<Integer>();
for (int i : zipcodelist)
{
if (lump.contains(i)) return true;
lump.add(i);
}
return false;
}
向惠乐鞠躬
请参阅HuyLe的答案以获取或多或少的O(n)解决方案,我认为这需要几个添加步骤:
static boolean duplicates(final int[] zipcodelist)
{
final int MAXZIP = 99999;
boolean[] bitmap = new boolean[MAXZIP+1];
java.util.Arrays.fill(bitmap, false);
for (int item : zipcodeList)
if (!bitmap[item]) bitmap[item] = true;
else return true;
}
return false;
}
或者只是为了紧凑
static boolean duplicates(final int[] zipcodelist)
{
final int MAXZIP = 99999;
boolean[] bitmap = new boolean[MAXZIP+1]; // Java guarantees init to false
for (int item : zipcodeList)
if (!(bitmap[item] ^= true)) return true;
return false;
}
这重要吗?
好吧,所以我运行了一个小基准测试,它到处都是不可靠的,但这是代码:
import java.util.BitSet;
class Yuk
{
static boolean duplicatesZero(final int[] zipcodelist)
{
boolean duplicates=false;
for (int j=0;j<zipcodelist.length;j++)
for (int k=j+1;k<zipcodelist.length;k++)
if (k!=j && zipcodelist[k] == zipcodelist[j])
duplicates=true;
return duplicates;
}
static boolean duplicatesOne(final int[] zipcodelist)
{
final int MAXZIP = 99999;
boolean[] bitmap = new boolean[MAXZIP + 1];
java.util.Arrays.fill(bitmap, false);
for (int item : zipcodelist) {
if (!(bitmap[item] ^= true))
return true;
}
return false;
}
static boolean duplicatesTwo(final int[] zipcodelist)
{
final int MAXZIP = 99999;
BitSet b = new BitSet(MAXZIP + 1);
b.set(0, MAXZIP, false);
for (int item : zipcodelist) {
if (!b.get(item)) {
b.set(item, true);
} else
return true;
}
return false;
}
enum ApproachT { NSQUARED, HASHSET, BITSET};
/**
* @param args
*/
public static void main(String[] args)
{
ApproachT approach = ApproachT.BITSET;
final int REPS = 100;
final int MAXZIP = 99999;
int[] sizes = new int[] { 10, 1000, 10000, 100000, 1000000 };
long[][] times = new long[sizes.length][REPS];
boolean tossme = false;
for (int sizei = 0; sizei < sizes.length; sizei++) {
System.err.println("Trial for zipcodelist size= "+sizes[sizei]);
for (int rep = 0; rep < REPS; rep++) {
int[] zipcodelist = new int[sizes[sizei]];
for (int i = 0; i < zipcodelist.length; i++) {
zipcodelist[i] = (int) (Math.random() * (MAXZIP + 1));
}
long begin = System.currentTimeMillis();
switch (approach) {
case NSQUARED :
tossme ^= (duplicatesZero(zipcodelist));
break;
case HASHSET :
tossme ^= (duplicatesOne(zipcodelist));
break;
case BITSET :
tossme ^= (duplicatesTwo(zipcodelist));
break;
}
long end = System.currentTimeMillis();
times[sizei][rep] = end - begin;
}
long avg = 0;
for (int rep = 0; rep < REPS; rep++) {
avg += times[sizei][rep];
}
System.err.println("Size=" + sizes[sizei] + ", avg time = "
+ avg / (double)REPS + "ms");
}
}
}
使用 NSQUARED:
Trial for size= 10
Size=10, avg time = 0.0ms
Trial for size= 1000
Size=1000, avg time = 0.0ms
Trial for size= 10000
Size=10000, avg time = 100.0ms
Trial for size= 100000
Size=100000, avg time = 9923.3ms
使用哈希集
Trial for zipcodelist size= 10
Size=10, avg time = 0.16ms
Trial for zipcodelist size= 1000
Size=1000, avg time = 0.15ms
Trial for zipcodelist size= 10000
Size=10000, avg time = 0.0ms
Trial for zipcodelist size= 100000
Size=100000, avg time = 0.16ms
Trial for zipcodelist size= 1000000
Size=1000000, avg time = 0.0ms
使用位集
Trial for zipcodelist size= 10
Size=10, avg time = 0.0ms
Trial for zipcodelist size= 1000
Size=1000, avg time = 0.0ms
Trial for zipcodelist size= 10000
Size=10000, avg time = 0.0ms
Trial for zipcodelist size= 100000
Size=100000, avg time = 0.0ms
Trial for zipcodelist size= 1000000
Size=1000000, avg time = 0.0ms
比塞特赢了!
但只有一根头发... .15ms 在 的误差范围内,我的基准测试中存在一些巨大的漏洞。请注意,对于任何长度超过 100000 的列表,您都可以简单地返回,因为会有重复项。实际上,如果列表是随机的,则可以为更短的列表返回真正的WHP。寓意是什么?在限制中,最有效的实现是:currentTimeMillis()
true
return true;
而且你不会经常犯错。