并行运算符被证明是几乎所有用例的问题,并且没有达到大多数人的期望,因此在1.0.0.rc.4版本中将其删除:https://github.com/ReactiveX/RxJava/pull/1716
如何执行此类行为并获得并行执行的一个很好的例子可以在这里看到。
在示例代码中,不清楚是同步的还是异步的。它稍微影响了如何解决问题,就好像它已经是异步的,不需要额外的调度。如果需要同步额外调度。searchServiceClient
首先,以下是一些显示同步和异步行为的简单示例:
import rx.Observable;
import rx.Subscriber;
import rx.schedulers.Schedulers;
public class ParallelExecution {
public static void main(String[] args) {
System.out.println("------------ mergingAsync");
mergingAsync();
System.out.println("------------ mergingSync");
mergingSync();
System.out.println("------------ mergingSyncMadeAsync");
mergingSyncMadeAsync();
System.out.println("------------ flatMapExampleSync");
flatMapExampleSync();
System.out.println("------------ flatMapExampleAsync");
flatMapExampleAsync();
System.out.println("------------");
}
private static void mergingAsync() {
Observable.merge(getDataAsync(1), getDataAsync(2)).toBlocking().forEach(System.out::println);
}
private static void mergingSync() {
// here you'll see the delay as each is executed synchronously
Observable.merge(getDataSync(1), getDataSync(2)).toBlocking().forEach(System.out::println);
}
private static void mergingSyncMadeAsync() {
// if you have something synchronous and want to make it async, you can schedule it like this
// so here we see both executed concurrently
Observable.merge(getDataSync(1).subscribeOn(Schedulers.io()), getDataSync(2).subscribeOn(Schedulers.io())).toBlocking().forEach(System.out::println);
}
private static void flatMapExampleAsync() {
Observable.range(0, 5).flatMap(i -> {
return getDataAsync(i);
}).toBlocking().forEach(System.out::println);
}
private static void flatMapExampleSync() {
Observable.range(0, 5).flatMap(i -> {
return getDataSync(i);
}).toBlocking().forEach(System.out::println);
}
// artificial representations of IO work
static Observable<Integer> getDataAsync(int i) {
return getDataSync(i).subscribeOn(Schedulers.io());
}
static Observable<Integer> getDataSync(int i) {
return Observable.create((Subscriber<? super Integer> s) -> {
// simulate latency
try {
Thread.sleep(1000);
} catch (Exception e) {
e.printStackTrace();
}
s.onNext(i);
s.onCompleted();
});
}
}
下面尝试提供一个与您的代码更匹配的示例:
import java.util.List;
import rx.Observable;
import rx.Subscriber;
import rx.schedulers.Schedulers;
public class ParallelExecutionExample {
public static void main(String[] args) {
final long startTime = System.currentTimeMillis();
Observable<Tile> searchTile = getSearchResults("search term")
.doOnSubscribe(() -> logTime("Search started ", startTime))
.doOnCompleted(() -> logTime("Search completed ", startTime));
Observable<TileResponse> populatedTiles = searchTile.flatMap(t -> {
Observable<Reviews> reviews = getSellerReviews(t.getSellerId())
.doOnCompleted(() -> logTime("getSellerReviews[" + t.id + "] completed ", startTime));
Observable<String> imageUrl = getProductImage(t.getProductId())
.doOnCompleted(() -> logTime("getProductImage[" + t.id + "] completed ", startTime));
return Observable.zip(reviews, imageUrl, (r, u) -> {
return new TileResponse(t, r, u);
}).doOnCompleted(() -> logTime("zip[" + t.id + "] completed ", startTime));
});
List<TileResponse> allTiles = populatedTiles.toList()
.doOnCompleted(() -> logTime("All Tiles Completed ", startTime))
.toBlocking().single();
}
private static Observable<Tile> getSearchResults(String string) {
return mockClient(new Tile(1), new Tile(2), new Tile(3));
}
private static Observable<Reviews> getSellerReviews(int id) {
return mockClient(new Reviews());
}
private static Observable<String> getProductImage(int id) {
return mockClient("image_" + id);
}
private static void logTime(String message, long startTime) {
System.out.println(message + " => " + (System.currentTimeMillis() - startTime) + "ms");
}
private static <T> Observable<T> mockClient(T... ts) {
return Observable.create((Subscriber<? super T> s) -> {
// simulate latency
try {
Thread.sleep(1000);
} catch (Exception e) {
}
for (T t : ts) {
s.onNext(t);
}
s.onCompleted();
}).subscribeOn(Schedulers.io());
// note the use of subscribeOn to make an otherwise synchronous Observable async
}
public static class TileResponse {
public TileResponse(Tile t, Reviews r, String u) {
// store the values
}
}
public static class Tile {
private final int id;
public Tile(int i) {
this.id = i;
}
public int getSellerId() {
return id;
}
public int getProductId() {
return id;
}
}
public static class Reviews {
}
}
此输出:
Search started => 65ms
Search completed => 1094ms
getProductImage[1] completed => 2095ms
getSellerReviews[2] completed => 2095ms
getProductImage[3] completed => 2095ms
zip[1] completed => 2096ms
zip[2] completed => 2096ms
getProductImage[2] completed => 2096ms
getSellerReviews[1] completed => 2096ms
zip[3] completed => 2096ms
All Tiles Completed => 2097ms
getSellerReviews[3] completed => 2097ms
我已将每个 IO 调用模拟为 1000 毫秒,因此很明显延迟在哪里,并且它是并行发生的。它打印出以经过的毫秒为单位的进度。
这里的诀窍是flatMap合并异步调用,因此只要要合并的可观察量是异步的,它们都将同时执行。
如果像这样的调用是同步的,它可以像这样异步:getProductImage(t.getProductId()).subscribeOn(Schedulers.io)。getProductImage(t.getProductId())
下面是上面示例的重要部分,没有所有日志记录和样板类型:
Observable<Tile> searchTile = getSearchResults("search term");;
Observable<TileResponse> populatedTiles = searchTile.flatMap(t -> {
Observable<Reviews> reviews = getSellerReviews(t.getSellerId());
Observable<String> imageUrl = getProductImage(t.getProductId());
return Observable.zip(reviews, imageUrl, (r, u) -> {
return new TileResponse(t, r, u);
});
});
List<TileResponse> allTiles = populatedTiles.toList()
.toBlocking().single();
我希望这有帮助。