使用哈希映射构建的稀疏数组对于频繁读取的数据非常低效。最有效的实现使用Trie,允许访问分段分布的单个向量。
Trie可以通过仅执行只读 TWO 数组索引来计算表中是否存在元素,以获取元素存储的有效位置,或者知道基础存储中是否不存在该元素。
它还可以在后备存储中为稀疏数组的默认值提供默认位置,这样您就不需要对返回的索引进行任何测试,因为 Trie 保证所有可能的源索引将至少映射到后备存储中的默认位置(您经常会存储零, 或空字符串或空对象)。
存在支持快速可更新的 Tries 的实现,具有 otional “compact()” 操作,以在多个操作结束时优化后备存储的大小。尝试比哈希图快得多,因为它们不需要任何复杂的哈希函数,也不需要处理读取的冲突(使用哈希映射,你既有读取和写入的冲突,这需要一个循环来跳到下一个候选位置,并对它们中的每一个进行测试以比较有效的源索引...)
此外,Java Hashmaps只能在对象上编制索引,并且为每个散列的源索引创建一个Integer对象(每次读取都需要创建此对象,而不仅仅是写入)在内存操作方面代价高昂,因为它会给垃圾回收器带来压力。
我真的希望JRE包含一个IntegerMap<Object>作为慢速HashMap的默认实现<Integer,Object>或LongTrieMap<Object>作为更慢的HashMap的默认实现<Long,Object>...但事实并非如此。
您可能想知道什么是Trie?
它只是一个小的整数数组(在比矩阵的完整坐标范围更小的范围内),允许将坐标映射到向量中的整数位置。
例如,假设您想要一个仅包含几个非零值的 1024*1024 矩阵。与其将该矩阵存储在包含 1024*1024 个元素(超过 100 万个)的数组中,不如将其拆分为大小为 16*16 的子范围,而只需要 64*64 个这样的子范围。
在这种情况下,Trie 索引将仅包含 64*64 个整数 (4096),并且至少会有 16*16 个数据元素(包含默认零,或稀疏矩阵中最常见的子范围)。
用于存储值的向量将仅包含 1 个副本,用于彼此相等的子范围(其中大多数都充满零,它们将由相同的子范围表示)。
因此,与其使用这样的语法,不如使用如下语法:matrix[i][j]
trie.values[trie.subrangePositions[(i & ~15) + (j >> 4)] +
((i & 15) << 4) + (j & 15)]
使用trie对象的访问方法可以更方便地处理。
下面是一个示例,内置于一个注释的类中(我希望它编译正常,因为它被简化了;如果有错误需要纠正,请向我发出信号):
/**
* Implement a sparse matrix. Currently limited to a static size
* (<code>SIZE_I</code>, <code>SIZE_I</code>).
*/
public class DoubleTrie {
/* Matrix logical options */
public static final int SIZE_I = 1024;
public static final int SIZE_J = 1024;
public static final double DEFAULT_VALUE = 0.0;
/* Internal splitting options */
private static final int SUBRANGEBITS_I = 4;
private static final int SUBRANGEBITS_J = 4;
/* Internal derived splitting constants */
private static final int SUBRANGE_I =
1 << SUBRANGEBITS_I;
private static final int SUBRANGE_J =
1 << SUBRANGEBITS_J;
private static final int SUBRANGEMASK_I =
SUBRANGE_I - 1;
private static final int SUBRANGEMASK_J =
SUBRANGE_J - 1;
private static final int SUBRANGE_POSITIONS =
SUBRANGE_I * SUBRANGE_J;
/* Internal derived default values for constructors */
private static final int SUBRANGES_I =
(SIZE_I + SUBRANGE_I - 1) / SUBRANGE_I;
private static final int SUBRANGES_J =
(SIZE_J + SUBRANGE_J - 1) / SUBRANGE_J;
private static final int SUBRANGES =
SUBRANGES_I * SUBRANGES_J;
private static final int DEFAULT_POSITIONS[] =
new int[SUBRANGES](0);
private static final double DEFAULT_VALUES[] =
new double[SUBRANGE_POSITIONS](DEFAULT_VALUE);
/* Internal fast computations of the splitting subrange and offset. */
private static final int subrangeOf(
final int i, final int j) {
return (i >> SUBRANGEBITS_I) * SUBRANGE_J +
(j >> SUBRANGEBITS_J);
}
private static final int positionOffsetOf(
final int i, final int j) {
return (i & SUBRANGEMASK_I) * MAX_J +
(j & SUBRANGEMASK_J);
}
/**
* Utility missing in java.lang.System for arrays of comparable
* component types, including all native types like double here.
*/
public static final int arraycompare(
final double[] values1, final int position1,
final double[] values2, final int position2,
final int length) {
if (position1 >= 0 && position2 >= 0 && length >= 0) {
while (length-- > 0) {
double value1, value2;
if ((value1 = values1[position1 + length]) !=
(value2 = values2[position2 + length])) {
/* Note: NaN values are different from everything including
* all Nan values; they are are also neigher lower than nor
* greater than everything including NaN. Note that the two
* infinite values, as well as denormal values, are exactly
* ordered and comparable with <, <=, ==, >=, >=, !=. Note
* that in comments below, infinite is considered "defined".
*/
if (value1 < value2)
return -1; /* defined < defined. */
if (value1 > value2)
return 1; /* defined > defined. */
if (value1 == value2)
return 0; /* defined == defined. */
/* One or both are NaN. */
if (value1 == value1) /* Is not a NaN? */
return -1; /* defined < NaN. */
if (value2 == value2) /* Is not a NaN? */
return 1; /* NaN > defined. */
/* Otherwise, both are NaN: check their precise bits in
* range 0x7FF0000000000001L..0x7FFFFFFFFFFFFFFFL
* including the canonical 0x7FF8000000000000L, or in
* range 0xFFF0000000000001L..0xFFFFFFFFFFFFFFFFL.
* Needed for sort stability only (NaNs are otherwise
* unordered).
*/
long raw1, raw2;
if ((raw1 = Double.doubleToRawLongBits(value1)) !=
(raw2 = Double.doubleToRawLongBits(value2)))
return raw1 < raw2 ? -1 : 1;
/* Otherwise the NaN are strictly equal, continue. */
}
}
return 0;
}
throw new ArrayIndexOutOfBoundsException(
"The positions and length can't be negative");
}
/**
* Utility shortcut for comparing ranges in the same array.
*/
public static final int arraycompare(
final double[] values,
final int position1, final int position2,
final int length) {
return arraycompare(values, position1, values, position2, length);
}
/**
* Utility missing in java.lang.System for arrays of equalizable
* component types, including all native types like double here.
*/
public static final boolean arrayequals(
final double[] values1, final int position1,
final double[] values2, final int position2,
final int length) {
return arraycompare(values1, position1, values2, position2, length) ==
0;
}
/**
* Utility shortcut for identifying ranges in the same array.
*/
public static final boolean arrayequals(
final double[] values,
final int position1, final int position2,
final int length) {
return arrayequals(values, position1, values, position2, length);
}
/**
* Utility shortcut for copying ranges in the same array.
*/
public static final void arraycopy(
final double[] values,
final int srcPosition, final int dstPosition,
final int length) {
arraycopy(values, srcPosition, values, dstPosition, length);
}
/**
* Utility shortcut for resizing an array, preserving values at start.
*/
public static final double[] arraysetlength(
double[] values,
final int newLength) {
final int oldLength =
values.length < newLength ? values.length : newLength;
System.arraycopy(values, 0, values = new double[newLength], 0,
oldLength);
return values;
}
/* Internal instance members. */
private double values[];
private int subrangePositions[];
private bool isSharedValues;
private bool isSharedSubrangePositions;
/* Internal method. */
private final reset(
final double[] values,
final int[] subrangePositions) {
this.isSharedValues =
(this.values = values) == DEFAULT_VALUES;
this.isSharedsubrangePositions =
(this.subrangePositions = subrangePositions) ==
DEFAULT_POSITIONS;
}
/**
* Reset the matrix to fill it with the same initial value.
*
* @param initialValue The value to set in all cell positions.
*/
public reset(final double initialValue = DEFAULT_VALUE) {
reset(
(initialValue == DEFAULT_VALUE) ? DEFAULT_VALUES :
new double[SUBRANGE_POSITIONS](initialValue),
DEFAULT_POSITIONS);
}
/**
* Default constructor, using single default value.
*
* @param initialValue Alternate default value to initialize all
* positions in the matrix.
*/
public DoubleTrie(final double initialValue = DEFAULT_VALUE) {
this.reset(initialValue);
}
/**
* This is a useful preinitialized instance containing the
* DEFAULT_VALUE in all cells.
*/
public static DoubleTrie DEFAULT_INSTANCE = new DoubleTrie();
/**
* Copy constructor. Note that the source trie may be immutable
* or not; but this constructor will create a new mutable trie
* even if the new trie initially shares some storage with its
* source when that source also uses shared storage.
*/
public DoubleTrie(final DoubleTrie source) {
this.values = (this.isSharedValues =
source.isSharedValues) ?
source.values :
source.values.clone();
this.subrangePositions = (this.isSharedSubrangePositions =
source.isSharedSubrangePositions) ?
source.subrangePositions :
source.subrangePositions.clone());
}
/**
* Fast indexed getter.
*
* @param i Row of position to set in the matrix.
* @param j Column of position to set in the matrix.
* @return The value stored in matrix at that position.
*/
public double getAt(final int i, final int j) {
return values[subrangePositions[subrangeOf(i, j)] +
positionOffsetOf(i, j)];
}
/**
* Fast indexed setter.
*
* @param i Row of position to set in the sparsed matrix.
* @param j Column of position to set in the sparsed matrix.
* @param value The value to set at this position.
* @return The passed value.
* Note: this does not compact the sparsed matric after setting.
* @see compact(void)
*/
public double setAt(final int i, final int i, final double value) {
final int subrange = subrangeOf(i, j);
final int positionOffset = positionOffsetOf(i, j);
// Fast check to see if the assignment will change something.
int subrangePosition, valuePosition;
if (Double.compare(
values[valuePosition =
(subrangePosition = subrangePositions[subrange]) +
positionOffset],
value) != 0) {
/* So we'll need to perform an effective assignment in values.
* Check if the current subrange to assign is shared of not.
* Note that we also include the DEFAULT_VALUES which may be
* shared by several other (not tested) trie instances,
* including those instanciated by the copy contructor. */
if (isSharedValues) {
values = values.clone();
isSharedValues = false;
}
/* Scan all other subranges to check if the position in values
* to assign is shared by another subrange. */
for (int otherSubrange = subrangePositions.length;
--otherSubrange >= 0; ) {
if (otherSubrange != subrange)
continue; /* Ignore the target subrange. */
/* Note: the following test of range is safe with future
* interleaving of common subranges (TODO in compact()),
* even though, for now, subranges are sharing positions
* only between their common start and end position, so we
* could as well only perform the simpler test <code>
* (otherSubrangePosition == subrangePosition)</code>,
* instead of testing the two bounds of the positions
* interval of the other subrange. */
int otherSubrangePosition;
if ((otherSubrangePosition =
subrangePositions[otherSubrange]) >=
valuePosition &&
otherSubrangePosition + SUBRANGE_POSITIONS <
valuePosition) {
/* The target position is shared by some other
* subrange, we need to make it unique by cloning the
* subrange to a larger values vector, copying all the
* current subrange values at end of the new vector,
* before assigning the new value. This will require
* changing the position of the current subrange, but
* before doing that, we first need to check if the
* subrangePositions array itself is also shared
* between instances (including the DEFAULT_POSITIONS
* that should be preserved, and possible arrays
* shared by an external factory contructor whose
* source trie was declared immutable in a derived
* class). */
if (isSharedSubrangePositions) {
subrangePositions = subrangePositions.clone();
isSharedSubrangePositions = false;
}
/* TODO: no attempt is made to allocate less than a
* fully independant subrange, using possible
* interleaving: this would require scanning all
* other existing values to find a match for the
* modified subrange of values; but this could
* potentially leave positions (in the current subrange
* of values) unreferenced by any subrange, after the
* change of position for the current subrange. This
* scanning could be prohibitively long for each
* assignement, and for now it's assumed that compact()
* will be used later, after those assignements. */
values = setlengh(
values,
(subrangePositions[subrange] =
subrangePositions = values.length) +
SUBRANGE_POSITIONS);
valuePosition = subrangePositions + positionOffset;
break;
}
}
/* Now perform the effective assignment of the value. */
values[valuePosition] = value;
}
}
return value;
}
/**
* Compact the storage of common subranges.
* TODO: This is a simple implementation without interleaving, which
* would offer a better data compression. However, interleaving with its
* O(N²) complexity where N is the total length of values, should
* be attempted only after this basic compression whose complexity is
* O(n²) with n being SUBRANGE_POSITIIONS times smaller than N.
*/
public void compact() {
final int oldValuesLength = values.length;
int newValuesLength = 0;
for (int oldPosition = 0;
oldPosition < oldValuesLength;
oldPosition += SUBRANGE_POSITIONS) {
int oldPosition = positions[subrange];
bool commonSubrange = false;
/* Scan values for possible common subranges. */
for (int newPosition = newValuesLength;
(newPosition -= SUBRANGE_POSITIONS) >= 0; )
if (arrayequals(values, newPosition, oldPosition,
SUBRANGE_POSITIONS)) {
commonSubrange = true;
/* Update the subrangePositions|] with all matching
* positions from oldPosition to newPosition. There may
* be several index to change, if the trie has already
* been compacted() before, and later reassigned. */
for (subrange = subrangePositions.length;
--subrange >= 0; )
if (subrangePositions[subrange] == oldPosition)
subrangePositions[subrange] = newPosition;
break;
}
if (!commonSubrange) {
/* Move down the non-common values, if some previous
* subranges have been compressed when they were common.
*/
if (!commonSubrange && oldPosition != newValuesLength) {
arraycopy(values, oldPosition, newValuesLength,
SUBRANGE_POSITIONS);
/* Advance compressed values to preserve these new ones. */
newValuesLength += SUBRANGE_POSITIONS;
}
}
}
/* Check the number of compressed values. */
if (newValuesLength < oldValuesLength) {
values = values.arraysetlength(newValuesLength);
isSharedValues = false;
}
}
}
注意:此代码不完整,因为它处理单个矩阵大小,并且其压缩器仅限于检测常见的子范围,而不交错它们。
此外,代码不会根据矩阵大小确定用于将矩阵拆分为子范围(对于 x 或 y 坐标)的最佳宽度或高度。它只是使用相同的静态子范围大小 16(对于两个坐标),但它可以方便地使用任何其他小幂 2(但非 2 的幂会减慢和内部方法的速度),对于两个坐标都是独立的,并且直到矩阵的最大宽度或高度。int indexOf(int, int)
int offsetOf(int, int)
compact()
如果这些拆分子范围的大小可以变化,那么将需要为这些子范围大小添加实例成员而不是静态,并使静态方法和非静态;和初始化数组,并且需要以不同的方式删除或重新定义。SUBRANGE_POSITIONS
int subrangeOf(int i, int j)
int positionOffsetOf(int i, int j)
DEFAULT_POSITIONS
DEFAULT_VALUES
如果你想支持交错,基本上你会首先将现有值分成两个大小大致相同的值(两者都是最小子范围大小的倍数,第一个子集可能比第二个子集多一个子范围),并且您将在所有连续位置扫描较大的子集以找到匹配的交错;然后,您将尝试匹配这些值。然后,您将通过将子集分成两半(也是最小子范围大小的倍数)来递归循环,然后再次扫描以匹配这些子集(这将使子集数乘以2:您必须怀疑子范围Position索引的两倍大小是否值得与现有值大小相比的值,以查看它是否提供有效的压缩(如果不是, 你止步于此:你已经直接从交错压缩过程中找到了最佳的子范围大小)。在这种情况下;在压缩期间,子范围大小将是可变的。
但是,此代码演示如何分配非零值并重新分配数组以用于其他(非零)子范围,然后如何优化(在使用该方法执行分配之后)此数据的存储,当存在可能统一在数据中的重复子范围时,并在数组中的相同位置重新编制索引。data
compact()
setAt(int i, int j, double value)
subrangePositions
无论如何,trie的所有原则都在那里实现:
使用单个向量而不是双索引数组数组(每个数组单独分配)来表示矩阵总是更快(并且在内存中更紧凑,这意味着更好的局部性)。改进在方法中是显而易见的!double getAt(int, int)
您可以节省大量空间,但在赋值时,重新分配新的子范围可能需要一些时间。因此,子范围不应太小,否则重新分配将过于频繁地发生,无法设置矩阵。
通过检测公共子范围,可以将初始大矩阵自动转换为更紧凑的矩阵。然后,典型的实现将包含如上所述的方法。但是,如果 get() 访问非常快,而 set() 非常快,那么如果有很多常见的子范围需要压缩,compact() 可能会非常慢(例如,当用自身减去一个大型非稀疏随机填充矩阵时,或将其乘以零时:在这种情况下,通过实例化新子范围并删除旧矩阵来重置 trie 会更简单、更快)。compact()
公共子范围在数据中使用公共存储,因此此共享数据必须是只读的。如果必须更改单个值而不更改矩阵的其余部分,则必须首先确保在索引中仅引用该值一次。否则,您需要在向量的任何位置(方便地在末端)分配一个新的子范围,然后将这个新子范围的位置存储到索引中。subrangePositions
values
subrangePositions
请注意,通用的Colt库虽然非常好,但在处理稀疏矩阵时并不那么好,因为它使用哈希(或行压缩)技术,这些技术目前不支持尝试,尽管它是一个出色的优化,既节省空间又节省时间,特别是对于最频繁的getAt()操作。
即使此处描述的 setAt() 操作 for try 也节省了大量时间(此处实现了该方法,即在设置后没有自动压缩,这仍然可以根据需求和估计时间来实现,其中压缩仍将以时间代价节省大量存储空间):节省时间与子范围内的单元格数量成正比, 并且节省的空间与每个子范围的单元格数成反比。如果使用子范围大小,那么每个子范围的单元格数是2D矩阵中单元格总数的平方根(使用3D矩阵时将是三次根),则一个很好的计算。
Colt 稀疏矩阵实现中使用的哈希技术具有不便之处,即它们会增加大量存储开销,并且由于可能的冲突而导致访问时间变慢。尝试可以避免所有冲突,然后可以保证在最坏的情况下将线性O(n)时间保存到O(1)时间,其中(n)是可能的碰撞次数(在稀疏矩阵的情况下,可能高达矩阵中非默认值单元格的数量,即矩阵大小的总数乘以与散列填充因子成比例的因子, 对于非稀疏,即完整矩阵)。
Colt中使用的RC(行压缩)技术更接近Tries,但这是以另一种价格,这里使用的压缩技术,对于最频繁的只读get()操作具有非常慢的访问时间,而对于setAt()操作的压缩非常慢。此外,使用的压缩不是正交的,这与在“尝试”的演示中保持正交性不同。对于相关的查看操作,Try 也将保留此正交性,例如步长、转置(被视为基于整数循环模运算的步进运算)、子排列(以及一般的子选择,包括排序视图)。
我只是希望Colt将来会更新,以使用Trys实现另一个实现(即TrieSparseMatrix,而不仅仅是HashSparseMatrix和RCSparseMatrix)。这些想法在本文中。
Trove实现(基于int->int映射)也基于类似于Colt的HashedSparseMatrix的哈希技术,即它们具有相同的不便。尝试将快得多,消耗适度的额外空间(但是这个空间可以优化,并且在延迟的时间内比Trove和Colt更好,在生成的矩阵/ trie上使用最终的紧离子运算)。
注意:此 Trie 实现绑定到特定的本机类型(此处为双精度)。这是自愿的,因为使用装箱类型的通用实现具有巨大的空间开销(并且在access时间内要慢得多)。在这里,它只使用双精度的原生一维数组,而不是泛型Vector。但是,对于 Tries,当然也可以派生出一个通用实现...不幸的是,Java仍然不允许编写具有本机类型所有优点的真正泛型类,除非通过编写多个实现(对于泛型对象类型或每个本机类型),并通过类型工厂提供所有这些操作。该语言应该能够自动实例化本机实现并自动构建工厂(目前即使在Java 7中也不是这样,这是.Net仍然保持其与本机类型一样快的真正泛型类型的优势)。