以下是我几年前为一门课写的一些代码,基于Jurafsky/Martin(第2版,第6章,如果你可以访问这本书)中的演示文稿。它真的不是很好的代码,没有使用numpy,它绝对应该这样做,并且它做了一些废话,让数组被1索引,而不仅仅是将公式调整为0索引,但是,好吧,也许它会有所帮助。Baum-Welch在代码中被称为“前进-后退”。
示例/测试数据基于Jason Eisner的电子表格,该电子表格实现了一些与HMM相关的算法。请注意,该模型的实现版本使用吸收 END 状态,其他状态具有转换概率,而不是假设预先存在的固定序列长度。
(如果您愿意,也可以作为要点使用。
hmm.py
,其中一半是基于以下文件测试代码:
#!/usr/bin/env python
"""
CS 65 Lab #3 -- 5 Oct 2008
Dougal Sutherland
Implements a hidden Markov model, based on Jurafsky + Martin's presentation,
which is in turn based off work by Jason Eisner. We test our program with
data from Eisner's spreadsheets.
"""
identity = lambda x: x
class HiddenMarkovModel(object):
"""A hidden Markov model."""
def __init__(self, states, transitions, emissions, vocab):
"""
states - a list/tuple of states, e.g. ('start', 'hot', 'cold', 'end')
start state needs to be first, end state last
states are numbered by their order here
transitions - the probabilities to go from one state to another
transitions[from_state][to_state] = prob
emissions - the probabilities of an observation for a given state
emissions[state][observation] = prob
vocab: a list/tuple of the names of observable values, in order
"""
self.states = states
self.real_states = states[1:-1]
self.start_state = 0
self.end_state = len(states) - 1
self.transitions = transitions
self.emissions = emissions
self.vocab = vocab
# functions to get stuff one-indexed
state_num = lambda self, n: self.states[n]
state_nums = lambda self: xrange(1, len(self.real_states) + 1)
vocab_num = lambda self, n: self.vocab[n - 1]
vocab_nums = lambda self: xrange(1, len(self.vocab) + 1)
num_for_vocab = lambda self, s: self.vocab.index(s) + 1
def transition(self, from_state, to_state):
return self.transitions[from_state][to_state]
def emission(self, state, observed):
return self.emissions[state][observed - 1]
# helper stuff
def _normalize_observations(self, observations):
return [None] + [self.num_for_vocab(o) if o.__class__ == str else o
for o in observations]
def _init_trellis(self, observed, forward=True, init_func=identity):
trellis = [ [None for j in range(len(observed))]
for i in range(len(self.real_states) + 1) ]
if forward:
v = lambda s: self.transition(0, s) * self.emission(s, observed[1])
else:
v = lambda s: self.transition(s, self.end_state)
init_pos = 1 if forward else -1
for state in self.state_nums():
trellis[state][init_pos] = init_func( v(state) )
return trellis
def _follow_backpointers(self, trellis, start):
# don't bother branching
pointer = start[0]
seq = [pointer, self.end_state]
for t in reversed(xrange(1, len(trellis[1]))):
val, backs = trellis[pointer][t]
pointer = backs[0]
seq.insert(0, pointer)
return seq
# actual algorithms
def forward_prob(self, observations, return_trellis=False):
"""
Returns the probability of seeing the given `observations` sequence,
using the Forward algorithm.
"""
observed = self._normalize_observations(observations)
trellis = self._init_trellis(observed)
for t in range(2, len(observed)):
for state in self.state_nums():
trellis[state][t] = sum(
self.transition(old_state, state)
* self.emission(state, observed[t])
* trellis[old_state][t-1]
for old_state in self.state_nums()
)
final = sum(trellis[state][-1] * self.transition(state, -1)
for state in self.state_nums())
return (final, trellis) if return_trellis else final
def backward_prob(self, observations, return_trellis=False):
"""
Returns the probability of seeing the given `observations` sequence,
using the Backward algorithm.
"""
observed = self._normalize_observations(observations)
trellis = self._init_trellis(observed, forward=False)
for t in reversed(range(1, len(observed) - 1)):
for state in self.state_nums():
trellis[state][t] = sum(
self.transition(state, next_state)
* self.emission(next_state, observed[t+1])
* trellis[next_state][t+1]
for next_state in self.state_nums()
)
final = sum(self.transition(0, state)
* self.emission(state, observed[1])
* trellis[state][1]
for state in self.state_nums())
return (final, trellis) if return_trellis else final
def viterbi_sequence(self, observations, return_trellis=False):
"""
Returns the most likely sequence of hidden states, for a given
sequence of observations. Uses the Viterbi algorithm.
"""
observed = self._normalize_observations(observations)
trellis = self._init_trellis(observed, init_func=lambda val: (val, [0]))
for t in range(2, len(observed)):
for state in self.state_nums():
emission_prob = self.emission(state, observed[t])
last = [(old_state, trellis[old_state][t-1][0] * \
self.transition(old_state, state) * \
emission_prob)
for old_state in self.state_nums()]
highest = max(last, key=lambda p: p[1])[1]
backs = [s for s, val in last if val == highest]
trellis[state][t] = (highest, backs)
last = [(old_state, trellis[old_state][-1][0] * \
self.transition(old_state, self.end_state))
for old_state in self.state_nums()]
highest = max(last, key = lambda p: p[1])[1]
backs = [s for s, val in last if val == highest]
seq = self._follow_backpointers(trellis, backs)
return (seq, trellis) if return_trellis else seq
def train_on_obs(self, observations, return_probs=False):
"""
Trains the model once, using the forward-backward algorithm. This
function returns a new HMM instance rather than modifying this one.
"""
observed = self._normalize_observations(observations)
forward_prob, forwards = self.forward_prob( observations, True)
backward_prob, backwards = self.backward_prob(observations, True)
# gamma values
prob_of_state_at_time = posat = [None] + [
[0] + [forwards[state][t] * backwards[state][t] / forward_prob
for t in range(1, len(observations)+1)]
for state in self.state_nums()]
# xi values
prob_of_transition = pot = [None] + [
[None] + [
[0] + [forwards[state1][t]
* self.transition(state1, state2)
* self.emission(state2, observed[t+1])
* backwards[state2][t+1]
/ forward_prob
for t in range(1, len(observations))]
for state2 in self.state_nums()]
for state1 in self.state_nums()]
# new transition probabilities
trans = [[0 for j in range(len(self.states))]
for i in range(len(self.states))]
trans[self.end_state][self.end_state] = 1
for state in self.state_nums():
state_prob = sum(posat[state])
trans[0][state] = posat[state][1]
trans[state][-1] = posat[state][-1] / state_prob
for oth in self.state_nums():
trans[state][oth] = sum(pot[state][oth]) / state_prob
# new emission probabilities
emit = [[0 for j in range(len(self.vocab))]
for i in range(len(self.states))]
for state in self.state_nums():
for output in range(1, len(self.vocab) + 1):
n = sum(posat[state][t] for t in range(1, len(observations)+1)
if observed[t] == output)
emit[state][output-1] = n / sum(posat[state])
trained = HiddenMarkovModel(self.states, trans, emit, self.vocab)
return (trained, posat, pot) if return_probs else trained
# ======================
# = reading from files =
# ======================
def normalize(string):
if '#' in string:
string = string[:string.index('#')]
return string.strip()
def make_hmm_from_file(f):
def nextline():
line = f.readline()
if line == '': # EOF
return None
else:
return normalize(line) or nextline()
n = int(nextline())
states = [nextline() for i in range(n)] # <3 list comprehension abuse
num_vocab = int(nextline())
vocab = [nextline() for i in range(num_vocab)]
transitions = [[float(x) for x in nextline().split()] for i in range(n)]
emissions = [[float(x) for x in nextline().split()] for i in range(n)]
assert nextline() is None
return HiddenMarkovModel(states, transitions, emissions, vocab)
def read_observations_from_file(f):
return filter(lambda x: x, [normalize(line) for line in f.readlines()])
# =========
# = tests =
# =========
import unittest
class TestHMM(unittest.TestCase):
def setUp(self):
# it's complicated to pass args to a testcase, so just use globals
self.hmm = make_hmm_from_file(file(HMM_FILENAME))
self.obs = read_observations_from_file(file(OBS_FILENAME))
def test_forward(self):
prob, trellis = self.hmm.forward_prob(self.obs, True)
self.assertAlmostEqual(prob, 9.1276e-19, 21)
self.assertAlmostEqual(trellis[1][1], 0.1, 4)
self.assertAlmostEqual(trellis[1][3], 0.00135, 5)
self.assertAlmostEqual(trellis[1][6], 8.71549e-5, 9)
self.assertAlmostEqual(trellis[1][13], 5.70827e-9, 9)
self.assertAlmostEqual(trellis[1][20], 1.3157e-10, 14)
self.assertAlmostEqual(trellis[1][27], 3.1912e-14, 13)
self.assertAlmostEqual(trellis[1][33], 2.0498e-18, 22)
self.assertAlmostEqual(trellis[2][1], 0.1, 4)
self.assertAlmostEqual(trellis[2][3], 0.03591, 5)
self.assertAlmostEqual(trellis[2][6], 5.30337e-4, 8)
self.assertAlmostEqual(trellis[2][13], 1.37864e-7, 11)
self.assertAlmostEqual(trellis[2][20], 2.7819e-12, 15)
self.assertAlmostEqual(trellis[2][27], 4.6599e-15, 18)
self.assertAlmostEqual(trellis[2][33], 7.0777e-18, 22)
def test_backward(self):
prob, trellis = self.hmm.backward_prob(self.obs, True)
self.assertAlmostEqual(prob, 9.1276e-19, 21)
self.assertAlmostEqual(trellis[1][1], 1.1780e-18, 22)
self.assertAlmostEqual(trellis[1][3], 7.2496e-18, 22)
self.assertAlmostEqual(trellis[1][6], 3.3422e-16, 20)
self.assertAlmostEqual(trellis[1][13], 3.5380e-11, 15)
self.assertAlmostEqual(trellis[1][20], 6.77837e-9, 14)
self.assertAlmostEqual(trellis[1][27], 1.44877e-5, 10)
self.assertAlmostEqual(trellis[1][33], 0.1, 4)
self.assertAlmostEqual(trellis[2][1], 7.9496e-18, 22)
self.assertAlmostEqual(trellis[2][3], 2.5145e-17, 21)
self.assertAlmostEqual(trellis[2][6], 1.6662e-15, 19)
self.assertAlmostEqual(trellis[2][13], 5.1558e-12, 16)
self.assertAlmostEqual(trellis[2][20], 7.52345e-9, 14)
self.assertAlmostEqual(trellis[2][27], 9.66609e-5, 9)
self.assertAlmostEqual(trellis[2][33], 0.1, 4)
def test_viterbi(self):
path, trellis = self.hmm.viterbi_sequence(self.obs, True)
self.assertEqual(path, [0] + [2]*13 + [1]*14 + [2]*6 + [3])
self.assertAlmostEqual(trellis[1][1] [0], 0.1, 4)
self.assertAlmostEqual(trellis[1][6] [0], 5.62e-05, 7)
self.assertAlmostEqual(trellis[1][7] [0], 4.50e-06, 8)
self.assertAlmostEqual(trellis[1][16][0], 1.99e-09, 11)
self.assertAlmostEqual(trellis[1][17][0], 3.18e-10, 12)
self.assertAlmostEqual(trellis[1][23][0], 4.00e-13, 15)
self.assertAlmostEqual(trellis[1][25][0], 1.26e-13, 15)
self.assertAlmostEqual(trellis[1][29][0], 7.20e-17, 19)
self.assertAlmostEqual(trellis[1][30][0], 1.15e-17, 19)
self.assertAlmostEqual(trellis[1][32][0], 7.90e-19, 21)
self.assertAlmostEqual(trellis[1][33][0], 1.26e-19, 21)
self.assertAlmostEqual(trellis[2][ 1][0], 0.1, 4)
self.assertAlmostEqual(trellis[2][ 4][0], 0.00502, 5)
self.assertAlmostEqual(trellis[2][ 6][0], 0.00045, 5)
self.assertAlmostEqual(trellis[2][12][0], 1.62e-07, 9)
self.assertAlmostEqual(trellis[2][18][0], 3.18e-12, 14)
self.assertAlmostEqual(trellis[2][19][0], 1.78e-12, 14)
self.assertAlmostEqual(trellis[2][23][0], 5.00e-14, 16)
self.assertAlmostEqual(trellis[2][28][0], 7.87e-16, 18)
self.assertAlmostEqual(trellis[2][29][0], 4.41e-16, 18)
self.assertAlmostEqual(trellis[2][30][0], 7.06e-17, 19)
self.assertAlmostEqual(trellis[2][33][0], 1.01e-18, 20)
def test_learning_probs(self):
trained, gamma, xi = self.hmm.train_on_obs(self.obs, True)
self.assertAlmostEqual(gamma[1][1], 0.129, 3)
self.assertAlmostEqual(gamma[1][3], 0.011, 3)
self.assertAlmostEqual(gamma[1][7], 0.022, 3)
self.assertAlmostEqual(gamma[1][14], 0.887, 3)
self.assertAlmostEqual(gamma[1][18], 0.994, 3)
self.assertAlmostEqual(gamma[1][23], 0.961, 3)
self.assertAlmostEqual(gamma[1][27], 0.507, 3)
self.assertAlmostEqual(gamma[1][33], 0.225, 3)
self.assertAlmostEqual(gamma[2][1], 0.871, 3)
self.assertAlmostEqual(gamma[2][3], 0.989, 3)
self.assertAlmostEqual(gamma[2][7], 0.978, 3)
self.assertAlmostEqual(gamma[2][14], 0.113, 3)
self.assertAlmostEqual(gamma[2][18], 0.006, 3)
self.assertAlmostEqual(gamma[2][23], 0.039, 3)
self.assertAlmostEqual(gamma[2][27], 0.493, 3)
self.assertAlmostEqual(gamma[2][33], 0.775, 3)
self.assertAlmostEqual(xi[1][1][1], 0.021, 3)
self.assertAlmostEqual(xi[1][1][12], 0.128, 3)
self.assertAlmostEqual(xi[1][1][32], 0.13, 3)
self.assertAlmostEqual(xi[2][1][1], 0.003, 3)
self.assertAlmostEqual(xi[2][1][22], 0.017, 3)
self.assertAlmostEqual(xi[2][1][32], 0.095, 3)
self.assertAlmostEqual(xi[1][2][4], 0.02, 3)
self.assertAlmostEqual(xi[1][2][16], 0.018, 3)
self.assertAlmostEqual(xi[1][2][29], 0.010, 3)
self.assertAlmostEqual(xi[2][2][2], 0.972, 3)
self.assertAlmostEqual(xi[2][2][12], 0.762, 3)
self.assertAlmostEqual(xi[2][2][28], 0.907, 3)
def test_learning_results(self):
trained = self.hmm.train_on_obs(self.obs)
tr = trained.transition
self.assertAlmostEqual(tr(0, 0), 0, 5)
self.assertAlmostEqual(tr(0, 1), 0.1291, 4)
self.assertAlmostEqual(tr(0, 2), 0.8709, 4)
self.assertAlmostEqual(tr(0, 3), 0, 4)
self.assertAlmostEqual(tr(1, 0), 0, 5)
self.assertAlmostEqual(tr(1, 1), 0.8757, 4)
self.assertAlmostEqual(tr(1, 2), 0.1090, 4)
self.assertAlmostEqual(tr(1, 3), 0.0153, 4)
self.assertAlmostEqual(tr(2, 0), 0, 5)
self.assertAlmostEqual(tr(2, 1), 0.0925, 4)
self.assertAlmostEqual(tr(2, 2), 0.8652, 4)
self.assertAlmostEqual(tr(2, 3), 0.0423, 4)
self.assertAlmostEqual(tr(3, 0), 0, 5)
self.assertAlmostEqual(tr(3, 1), 0, 4)
self.assertAlmostEqual(tr(3, 2), 0, 4)
self.assertAlmostEqual(tr(3, 3), 1, 4)
em = trained.emission
self.assertAlmostEqual(em(0, 1), 0, 4)
self.assertAlmostEqual(em(0, 2), 0, 4)
self.assertAlmostEqual(em(0, 3), 0, 4)
self.assertAlmostEqual(em(1, 1), 0.6765, 4)
self.assertAlmostEqual(em(1, 2), 0.2188, 4)
self.assertAlmostEqual(em(1, 3), 0.1047, 4)
self.assertAlmostEqual(em(2, 1), 0.0584, 4)
self.assertAlmostEqual(em(2, 2), 0.4251, 4)
self.assertAlmostEqual(em(2, 3), 0.5165, 4)
self.assertAlmostEqual(em(3, 1), 0, 4)
self.assertAlmostEqual(em(3, 2), 0, 4)
self.assertAlmostEqual(em(3, 3), 0, 4)
# train 9 more times
for i in range(9):
trained = trained.train_on_obs(self.obs)
tr = trained.transition
self.assertAlmostEqual(tr(0, 0), 0, 4)
self.assertAlmostEqual(tr(0, 1), 0, 4)
self.assertAlmostEqual(tr(0, 2), 1, 4)
self.assertAlmostEqual(tr(0, 3), 0, 4)
self.assertAlmostEqual(tr(1, 0), 0, 4)
self.assertAlmostEqual(tr(1, 1), 0.9337, 4)
self.assertAlmostEqual(tr(1, 2), 0.0663, 4)
self.assertAlmostEqual(tr(1, 3), 0, 4)
self.assertAlmostEqual(tr(2, 0), 0, 4)
self.assertAlmostEqual(tr(2, 1), 0.0718, 4)
self.assertAlmostEqual(tr(2, 2), 0.8650, 4)
self.assertAlmostEqual(tr(2, 3), 0.0632, 4)
self.assertAlmostEqual(tr(3, 0), 0, 4)
self.assertAlmostEqual(tr(3, 1), 0, 4)
self.assertAlmostEqual(tr(3, 2), 0, 4)
self.assertAlmostEqual(tr(3, 3), 1, 4)
em = trained.emission
self.assertAlmostEqual(em(0, 1), 0, 4)
self.assertAlmostEqual(em(0, 2), 0, 4)
self.assertAlmostEqual(em(0, 3), 0, 4)
self.assertAlmostEqual(em(1, 1), 0.6407, 4)
self.assertAlmostEqual(em(1, 2), 0.1481, 4)
self.assertAlmostEqual(em(1, 3), 0.2112, 4)
self.assertAlmostEqual(em(2, 1), 0.00016,5)
self.assertAlmostEqual(em(2, 2), 0.5341, 4)
self.assertAlmostEqual(em(2, 3), 0.4657, 4)
self.assertAlmostEqual(em(3, 1), 0, 4)
self.assertAlmostEqual(em(3, 2), 0, 4)
self.assertAlmostEqual(em(3, 3), 0, 4)
if __name__ == '__main__':
import sys
HMM_FILENAME = sys.argv[1] if len(sys.argv) >= 2 else 'example.hmm'
OBS_FILENAME = sys.argv[2] if len(sys.argv) >= 3 else 'observations.txt'
unittest.main()
observations.txt
,用于测试的一系列观察结果:
2
3
3
2
3
2
3
2
2
3
1
3
3
1
1
1
2
1
1
1
3
1
2
1
1
1
2
3
3
2
3
2
2
example.hmm
,用于生成数据的模型
4 # number of states
START
COLD
HOT
END
3 # size of vocab
1
2
3
# transition matrix
0.0 0.5 0.5 0.0 # from start
0.0 0.8 0.1 0.1 # from cold
0.0 0.1 0.8 0.1 # from hot
0.0 0.0 0.0 1.0 # from end
# emission matrix
0.0 0.0 0.0 # from start
0.7 0.2 0.1 # from cold
0.1 0.2 0.7 # from hot
0.0 0.0 0.0 # from end