边界椭圆
我得到了一个图形模块的分配,其中一部分是计算一组任意形状的最小边界椭圆。椭圆不必是轴对齐的。
这是使用AWT形状在java(euch)中工作的,所以我可以使用形状提供的所有工具来检查对象的包含/交集。
我得到了一个图形模块的分配,其中一部分是计算一组任意形状的最小边界椭圆。椭圆不必是轴对齐的。
这是使用AWT形状在java(euch)中工作的,所以我可以使用形状提供的所有工具来检查对象的包含/交集。
您正在寻找最小体积封闭椭球体,或者在 2D 情况下,查找最小面积。这个优化问题是凸的,可以有效地解决。查看我所包含的链接中的MATLAB代码 - 该实现是微不足道的,不需要比矩阵反转更复杂的东西。
任何对数学感兴趣的人都应该阅读本文档。
此外,绘制椭圆也很简单 - 这可以在这里找到,但是您需要一个特定于MATLAB的函数来生成椭圆上的点。
但是由于该算法以矩阵形式返回椭圆方程,
您可以使用此代码来了解如何将方程式转换为规范形式,
使用奇异值分解 (SVD)。然后很容易使用规范形式绘制椭圆。
下面是一组 10 个随机 2D 点(蓝色)上的 MATLAB 代码的结果。
其他方法(如 PCA)不保证从分解(特征/奇异值)获得的椭圆将是最小边界椭圆,因为椭圆外的点是方差的指示。
编辑:
因此,如果有人阅读了文档,有两种方法可以在2D中解决这个问题:这是最优算法的伪代码 - 文档中清楚地解释了次优算法:
最优算法:
Input: A 2x10 matrix P storing 10 2D points
and tolerance = tolerance for error.
Output: The equation of the ellipse in the matrix form,
i.e. a 2x2 matrix A and a 2x1 vector C representing
the center of the ellipse.
// Dimension of the points
d = 2;
// Number of points
N = 10;
// Add a row of 1s to the 2xN matrix P - so Q is 3xN now.
Q = [P;ones(1,N)]
// Initialize
count = 1;
err = 1;
//u is an Nx1 vector where each element is 1/N
u = (1/N) * ones(N,1)
// Khachiyan Algorithm
while err > tolerance
{
// Matrix multiplication:
// diag(u) : if u is a vector, places the elements of u
// in the diagonal of an NxN matrix of zeros
X = Q*diag(u)*Q'; // Q' - transpose of Q
// inv(X) returns the matrix inverse of X
// diag(M) when M is a matrix returns the diagonal vector of M
M = diag(Q' * inv(X) * Q); // Q' - transpose of Q
// Find the value and location of the maximum element in the vector M
maximum = max(M);
j = find_maximum_value_location(M);
// Calculate the step size for the ascent
step_size = (maximum - d -1)/((d+1)*(maximum-1));
// Calculate the new_u:
// Take the vector u, and multiply all the elements in it by (1-step_size)
new_u = (1 - step_size)*u ;
// Increment the jth element of new_u by step_size
new_u(j) = new_u(j) + step_size;
// Store the error by taking finding the square root of the SSD
// between new_u and u
// The SSD or sum-of-square-differences, takes two vectors
// of the same size, creates a new vector by finding the
// difference between corresponding elements, squaring
// each difference and adding them all together.
// So if the vectors were: a = [1 2 3] and b = [5 4 6], then:
// SSD = (1-5)^2 + (2-4)^2 + (3-6)^2;
// And the norm(a-b) = sqrt(SSD);
err = norm(new_u - u);
// Increment count and replace u
count = count + 1;
u = new_u;
}
// Put the elements of the vector u into the diagonal of a matrix
// U with the rest of the elements as 0
U = diag(u);
// Compute the A-matrix
A = (1/d) * inv(P * U * P' - (P * u)*(P*u)' );
// And the center,
c = P * u;
多亏了Jacob的伪代码,我才能够在Java中实现最小体积封闭椭球体(MVEE)。有公共方法可以获取中心点,即“A”矩阵,以及生成可用于呈现椭圆的坐标列表的方法。后者基于Peter Lawrence在原始MVEE代码的评论中发布的MatLab代码。请注意,代码引用了一个名为“Eigen”的类 - Jama的特征值分解类的修改版本(我删除了矩阵类依赖项)。我会添加它,但答案有30k字符限制...
public class Ellipse {
private double[] center;
private double[][] A;
private double l1;
private double l2;
private double thu;
//**************************************************************************
//** Constructor
//**************************************************************************
/** @param P An array of points. Each entry in the array contains an x,y
* coordinate.
*/
public Ellipse(double[][] P, double tolerance){
// Dimension of the points
double d = 2;
// Number of points
int N = P.length;
// Rotate the array of points
P = transpose(P);
// Add a row of 1s to the 2xN matrix P - so Q is 3xN now.
//Q = [P;ones(1,N)]
double[][] Q = merge(P, ones(1,N));
// Initialize
int count = 1;
double err = 1;
//u is an Nx1 vector where each element is 1/N
//u = (1/N) * ones(N,1)
double[] u = new double[N];
for (int i=0; i<u.length; i++) u[i] = (1D/(double)N);
// Khachiyan Algorithm
while (err > tolerance){
// Matrix multiplication:
// diag(u) : if u is a vector, places the elements of u
// in the diagonal of an NxN matrix of zeros
//X = Q*diag(u)*Q'; // Q' - transpose of Q
double[][] X = multiply(multiply(Q,diag(u)), transpose(Q));
// inv(X) returns the matrix inverse of X
// diag(M) when M is a matrix returns the diagonal vector of M
//M = diag(Q' * inv(X) * Q); // Q' - transpose of Q
double[] M = diag(multiply(multiply(transpose(Q), inv(X)), Q));
//Find the value and location of the maximum element in the vector M
double maximum = max(M);
int j = find_maximum_value_location(M, maximum);
// Calculate the step size for the ascent
double step_size = (maximum - d -1)/((d+1)*(maximum-1));
// Calculate the new_u:
// Take the vector u, and multiply all the elements in it by (1-step_size)
double[] new_u = multiply((1 - step_size), u);
// Increment the jth element of new_u by step_size
new_u[j] = new_u[j] + step_size;
// Calculate error by taking finding the square root of the SSD
// between new_u and u
err = Math.sqrt(ssd(new_u, u));
// Increment count and replace u
count = count + 1;
u = new_u;
}
// Compute center point
//c = P * u
double[][] c = multiply(P, u);
center = transpose(c)[0];
// Put the elements of the vector u into the diagonal of a matrix
// U with the rest of the elements as 0
double[][] U = diag(u);
// Compute the A-matrix
//A = (1/d) * inv(P * U * P' - (P * u)*(P*u)' );
double[][] pup = multiply(multiply(P, U) , transpose(P));
double[][] pupu = multiply((multiply(P, u)), transpose(multiply(P, u)));
double[][] pup_pupu = minus(pup, pupu);
A = multiply((1/d), inv(pup_pupu));
// Compute Eigen vectors and values
//A=inv(A);
//[Ve,De]=eig(A);
Eigen eig = new Eigen(inv(A));
double[][] Ve = eig.getV(); //eigenvalues
double[][] De = eig.getD(); //right eigenvectors
reorderEigenVectors(De);
reorderEigenValues(Ve);
//v=sqrt(diag(De));
double[] v = sqrt(diag(De));
//[l1,Ie] = max(v);
l1 = max(v);
int Ie = find_maximum_value_location(v, l1); //off by one from MatLab but I think it's ok here
//veig=Ve(:,Ie);
double[] veig = new double[Ve.length];
for (int i=0; i<veig.length; i++){
veig[i] = Ve[Ie][i];
}
//thu=atan2(veig(2),veig(1));
thu = Math.atan2(veig[1], veig[0]);
//l2=v(setdiff([1 2],Ie));
l2 = v[setdiff(new int[]{0,1}, Ie)];
}
//**************************************************************************
//** getCenter
//**************************************************************************
/** Returns the center point of the ellipse
*/
public double[] getCenter(){
double[] pt = new double[2];
pt[0] = center[0];
pt[1] = center[1];
return pt;
}
//**************************************************************************
//** getMatrix
//**************************************************************************
/** Returns a matrix containing all the information regarding the shape of
* the ellipsoid. To get the radii and orientation of the ellipsoid take
* the Singular Value Decomposition of the matrix.
*/
public double[][] getMatrix(){
return A;
}
//**************************************************************************
//** getBoundingCoordinates
//**************************************************************************
/** Returns a list of coordinates that can be used to render the ellipse.
* @param numPoints The number of points used to represent the ellipse.
* The higher the number the more dense the ellipse outline, the more
* accurate the shape.
*/
public double[][] getBoundingCoordinates(int numPoints){
//tq=linspace(-pi,pi,50);
double[] tq = linspace(-Math.PI, Math.PI, numPoints);
//U=[cos(thu) -sin(thu);sin(thu) cos(thu)]*[l1*cos(tq);l2*sin(tq)];
double[][] U = multiply(
new double[][]{
createVector(Math.cos(thu), -Math.sin(thu)),
createVector(Math.sin(thu), Math.cos(thu))
},
new double[][]{
multiply(l1, cos(tq)),
multiply(l2, sin(tq))
}
);
//System.out.println(toString(transpose(U)));
double[][] coords = transpose(U);
for (int i=0; i<coords.length; i++){
double x = coords[i][0] + center[0];
double y = coords[i][1] + center[1];
coords[i][0] = x;
coords[i][1] = y;
}
return coords;
}
//**************************************************************************
//** reorderEigenVectors
//**************************************************************************
/** Eigen values generated from Apache Common Math and JAMA are different
* than MatLab. The vectors are in the reverse order than expected. This
* function will update the array to what we expect to see in MatLab.
*/
private void reorderEigenVectors(double[][] De){
rotateMatrix(De);
rotateMatrix(De);
}
//**************************************************************************
//** reorderEigenValues
//**************************************************************************
/** Eigen values generated from Apache Common Math and JAMA are different
* than MatLab. The vectors are in reverse order than expected and with an
* opposite sign. This function will update the array to what we expect to
* see in MatLab.
*/
private void reorderEigenValues(double[][] Ve){
rotateMatrix(Ve);
for (int i=0; i<Ve.length; i++){
for (int j=0; j<Ve[i].length; j++){
Ve[i][j] = -Ve[i][j];
}
}
}
//**************************************************************************
//** linspace
//**************************************************************************
private double[] linspace(double min, double max, int points) {
double[] d = new double[points];
for (int i = 0; i < points; i++){
d[i] = min + i * (max - min) / (points - 1);
}
return d;
}
//**************************************************************************
//** ssd
//**************************************************************************
/** Returns the sum-of-square-differences between tow arrays. Takes two
* vectors of the same size, creates a new vector by finding the difference
* between corresponding elements, squaring each difference and adding them
* all together. So if the vectors were: a = [1 2 3] and b = [5 4 6], then:
* SSD = (1-5)^2 + (2-4)^2 + (3-6)^2;
*/
private double ssd(double[] a, double[] b){
double ssd = 0;
for (int i=0; i<a.length; i++){
ssd += Math.pow(a[i]-b[i], 2);
}
return ssd;
}
//**************************************************************************
//** ones
//**************************************************************************
/** Creates an array of all ones. For example, ones(2,3) returns a 2-by-3
* array of ones.
<pre>
1 1 1
1 1 1
</pre>
* Reference: https://www.mathworks.com/help/matlab/ref/ones.html
*/
private double[][] ones(int rows, int cols){
double[][] arr = new double[rows][];
for (int i=0; i<arr.length; i++){
double[] row = new double[cols];
for (int j=0; j<row.length; j++){
row[j] = 1;
}
arr[i] = row;
}
return arr;
}
//**************************************************************************
//** merge
//**************************************************************************
/** Used to combine two arrays into one
*/
private double[][] merge(double[][] m1, double[][] m2) {
int x = 0;
double[][] out = new double[m1.length + m2.length][];
for (int i=0; i<m1.length; i++){
out[x] = m1[i];
x++;
}
for (int i=0; i<m2.length; i++){
out[x] = m2[i];
x++;
}
return out;
}
//**************************************************************************
//** multiply
//**************************************************************************
/** Used to multiply all the values in the vector (arr) by n. This is called
* scalar multiplication.
*/
private double[] multiply(double n, double[] arr){
double[] out = new double[arr.length];
for (int i=0; i<arr.length; i++){
out[i] = arr[i]*n;
}
return out;
}
//**************************************************************************
//** multiply
//**************************************************************************
/** Used to multiply all the values in the matrix (arr) by n
*/
private double[][] multiply(double n, double[][] arr){
double[][] out = new double[arr.length][];
for (int i=0; i<arr.length; i++){
double[] row = arr[i];
double[] r = new double[row.length];
for (int j=0; j<row.length; j++){
r[j] = row[j]*n;
}
out[i] = r;
}
return out;
}
//**************************************************************************
//** multiply
//**************************************************************************
/** Multiply a matrix with a vector by converting the vector to a matrix
*/
private double[][] multiply(double[][] P, double[] u){
double[][] m2 = new double[u.length][];
for (int i=0; i<m2.length; i++){
double[] row = new double[1];
row[0] = u[i];
m2[i] = row;
}
return multiply(P, m2);
}
//**************************************************************************
//** multiply
//**************************************************************************
/** Used to multiply two matrices. Credit:
* https://stackoverflow.com/a/23817780
*/
private double[][] multiply(double[][] m1, double[][] m2) {
int m1ColLength = m1[0].length; // m1 columns length
int m2RowLength = m2.length; // m2 rows length
if(m1ColLength != m2RowLength) return null; // matrix multiplication is not possible
int mRRowLength = m1.length; // m result rows length
int mRColLength = m2[0].length; // m result columns length
double[][] mResult = new double[mRRowLength][mRColLength];
for(int i = 0; i < mRRowLength; i++) { // rows from m1
for(int j = 0; j < mRColLength; j++) { // columns from m2
for(int k = 0; k < m1ColLength; k++) { // columns from m1
mResult[i][j] += m1[i][k] * m2[k][j];
}
}
}
return mResult;
}
//**************************************************************************
//** diag
//**************************************************************************
/** Returns a matrix for a given vector. The values in the vector will
* appear diagonally in the output.
* Reference: https://www.mathworks.com/help/matlab/ref/diag.html
*/
private double[][] diag(double[] arr){
double[][] out = new double[arr.length][];
for (int i=0; i<arr.length; i++){
double[] row = new double[arr.length];
for (int j=0; j<row.length; j++){
if (j==i) row[j] = arr[i];
else row[j] = 0;
}
out[i] = row;
}
return out;
}
//**************************************************************************
//** diag
//**************************************************************************
/** Returns a vector representing values that appear diagonally in the given
* matrix.
* Reference: https://www.mathworks.com/help/matlab/ref/diag.html
*/
private double[] diag(double[][] arr){
double[] out = new double[arr.length];
for (int i=0; i<arr.length; i++){
out[i] = arr[i][i];
}
return out;
}
//**************************************************************************
//** transpose
//**************************************************************************
/** Interchanges the row and column index for each element
* Reference: https://www.mathworks.com/help/matlab/ref/transpose.html
*/
private double[][] transpose(double[][] arr){
int rows = arr.length;
int cols = arr[0].length;
double[][] out = new double[cols][rows];
for (int x = 0; x < cols; x++) {
for (int y = 0; y < rows; y++) {
out[x][y] = arr[y][x];
}
}
return out;
}
//**************************************************************************
//** inv
//**************************************************************************
/** Returns the inverse of a matrix. Relies on 2 different implementations.
* The first implementation is more accurate (passes inverse check) but
* has the potential to fail. If so, falls back to second method that
* relies on partial-pivoting Gaussian elimination.
* Reference: https://www.mathworks.com/help/matlab/ref/inv.html
*/
private double[][] inv(double[][] matrix){
try{
return inv1(matrix);
}
catch(Exception e){
try{
return inv2(matrix);
}
catch(Exception ex){
throw new RuntimeException(ex);
}
}
}
//**************************************************************************
//** inv1
//**************************************************************************
/** Returns the inverse of a matrix. This implementation passes inverse
* check so I think it's valid but it has a tendency to fail. For example,
* the following matrix fails with a ArrayIndexOutOfBoundsException in the
* determinant method.
<pre>
1171.18 658.33
658.33 1039.55
</pre>
* Credit: https://github.com/rchen8/Algorithms/blob/master/Matrix.java
*/
private double[][] inv1(double[][] matrix){
double[][] inverse = new double[matrix.length][matrix.length];
// minors and cofactors
for (int i = 0; i < matrix.length; i++)
for (int j = 0; j < matrix[i].length; j++)
inverse[i][j] = Math.pow(-1, i + j)
* determinant(minor(matrix, i, j));
// adjugate and determinant
double det = 1.0 / determinant(matrix);
for (int i = 0; i < inverse.length; i++) {
for (int j = 0; j <= i; j++) {
double temp = inverse[i][j];
inverse[i][j] = inverse[j][i] * det;
inverse[j][i] = temp * det;
}
}
return inverse;
}
private static double determinant(double[][] matrix) {
if (matrix.length != matrix[0].length)
throw new IllegalStateException("invalid dimensions");
if (matrix.length == 2)
return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];
double det = 0;
for (int i = 0; i < matrix[0].length; i++)
det += Math.pow(-1, i) * matrix[0][i]
* determinant(minor(matrix, 0, i));
return det;
}
private static double[][] minor(double[][] matrix, int row, int column) {
double[][] minor = new double[matrix.length - 1][matrix.length - 1];
for (int i = 0; i < matrix.length; i++)
for (int j = 0; i != row && j < matrix[i].length; j++)
if (j != column)
minor[i < row ? i : i - 1][j < column ? j : j - 1] = matrix[i][j];
return minor;
}
//**************************************************************************
//** inv2
//**************************************************************************
/** Returns the inverse of a matrix. This implementation successfully
* executes but does not pass the inverse check.
* Credit: https://www.sanfoundry.com/java-program-find-inverse-matrix/
*/
public static double[][] inv2(double a[][]){
int n = a.length;
double x[][] = new double[n][n];
double b[][] = new double[n][n];
int index[] = new int[n];
for (int i=0; i<n; ++i)
b[i][i] = 1;
//Transform the matrix into an upper triangle
gaussian(a, index);
//Update the matrix b[i][j] with the ratios stored
for (int i=0; i<n-1; ++i){
for (int j=i+1; j<n; ++j){
for (int k=0; k<n; ++k){
b[index[j]][k]
-= a[index[j]][i]*b[index[i]][k];
}
}
}
//Perform backward substitutions
for (int i=0; i<n; ++i){
x[n-1][i] = b[index[n-1]][i]/a[index[n-1]][n-1];
for (int j=n-2; j>=0; --j){
x[j][i] = b[index[j]][i];
for (int k=j+1; k<n; ++k){
x[j][i] -= a[index[j]][k]*x[k][i];
}
x[j][i] /= a[index[j]][j];
}
}
return x;
}
// Method to carry out the partial-pivoting Gaussian
// elimination. Here index[] stores pivoting order.
public static void gaussian(double a[][], int index[]) {
int n = index.length;
double c[] = new double[n];
// Initialize the index
for (int i=0; i<n; ++i)
index[i] = i;
// Find the rescaling factors, one from each row
for (int i=0; i<n; ++i) {
double c1 = 0;
for (int j=0; j<n; ++j){
double c0 = Math.abs(a[i][j]);
if (c0 > c1) c1 = c0;
}
c[i] = c1;
}
// Search the pivoting element from each column
int k = 0;
for (int j=0; j<n-1; ++j){
double pi1 = 0;
for (int i=j; i<n; ++i){
double pi0 = Math.abs(a[index[i]][j]);
pi0 /= c[index[i]];
if (pi0 > pi1) {
pi1 = pi0;
k = i;
}
}
// Interchange rows according to the pivoting order
int itmp = index[j];
index[j] = index[k];
index[k] = itmp;
for (int i=j+1; i<n; ++i){
double pj = a[index[i]][j]/a[index[j]][j];
// Record pivoting ratios below the diagonal
a[index[i]][j] = pj;
// Modify other elements accordingly
for (int l=j+1; l<n; ++l)
a[index[i]][l] -= pj*a[index[j]][l];
}
}
}
//**************************************************************************
//** max
//**************************************************************************
/** Returns the max value in a vector
*/
private double max(double[] arr){
double max = arr[0];
for (double d : arr){
max = Math.max(d, max);
}
return max;
}
//**************************************************************************
//** find_maximum_value_location
//**************************************************************************
/** Returns the index of the max value in a vector
*/
private int find_maximum_value_location(double[] arr, double max){
for (int i=0; i<arr.length; i++){
if (arr[i]==max) return i;
}
return 0;
}
//**************************************************************************
//** minus
//**************************************************************************
/** Used to subtract array B from array A and returns the result
* Reference: https://www.mathworks.com/help/matlab/ref/minus.html
*/
private double[][] minus(double[][] a, double[][] b){
double[][] out = new double[a.length][];
for (int i=0; i<out.length; i++){
double[] row = new double[a[i].length];
for (int j=0; j<row.length; j++){
row[j] = a[i][j]-b[i][j];
}
out[i] = row;
}
return out;
}
//**************************************************************************
//** sqrt
//**************************************************************************
/** Returns the square root of each element in a vector
* Reference: https://www.mathworks.com/help/matlab/ref/sqrt.html
*/
private double[] sqrt(double[] arr){
double[] out = new double[arr.length];
for (int i=0; i<out.length; i++){
out[i] = Math.sqrt(arr[i]);
}
return out;
}
private double[] cos(double[] arr){
double[] out = new double[arr.length];
for (int i=0; i<out.length; i++){
out[i] = Math.cos(arr[i]);
}
return out;
}
private double[] sin(double[] arr){
double[] out = new double[arr.length];
for (int i=0; i<out.length; i++){
out[i] = Math.sin(arr[i]);
}
return out;
}
//**************************************************************************
//** setdiff
//**************************************************************************
/** Partial implementation of setdiff
*/
private int setdiff(int[] arr, int x){
for (int i : arr){
if (i!=x) return i;
}
return 0; //?
}
//**************************************************************************
//** rotateMatrix
//**************************************************************************
private void rotateMatrix(double mat[][]) {
int N = mat[0].length;
// Consider all squares one by one
for (int x = 0; x < N / 2; x++)
{
// Consider elements in group of 4 in
// current square
for (int y = x; y < N-x-1; y++)
{
// store current cell in temp variable
double temp = mat[x][y];
// move values from right to top
mat[x][y] = mat[y][N-1-x];
// move values from bottom to right
mat[y][N-1-x] = mat[N-1-x][N-1-y];
// move values from left to bottom
mat[N-1-x][N-1-y] = mat[N-1-y][x];
// assign temp to left
mat[N-1-y][x] = temp;
}
}
}
//**************************************************************************
//** createVector
//**************************************************************************
/** Used to generate a vector for testing purposes
*/
private double[] createVector(double ...d){
double[] arr = new double[d.length];
for (int i=0; i<arr.length; i++){
arr[i] = d[i];
}
return arr;
}
}
此处的示例输出使用 10 个随机点,容差为 0.001。椭圆是使用通过 Ellipse.getBoundingCoordinates() 方法生成的直线连接点渲染的,该方法使用 50 个点。