由于它们都基于线性拟合,因此 OLS多回退是线性、多项式、指数、对数和幂趋势线所需的全部功能。
你的问题给了我一个下载和玩公地数学回归工具的借口,我把一些趋势线工具放在一起:
接口:
public interface TrendLine {
public void setValues(double[] y, double[] x); // y ~ f(x)
public double predict(double x); // get a predicted y for a given x
}
基于回归的趋势线的抽象类:
public abstract class OLSTrendLine implements TrendLine {
RealMatrix coef = null; // will hold prediction coefs once we get values
protected abstract double[] xVector(double x); // create vector of values from x
protected abstract boolean logY(); // set true to predict log of y (note: y must be positive)
@Override
public void setValues(double[] y, double[] x) {
if (x.length != y.length) {
throw new IllegalArgumentException(String.format("The numbers of y and x values must be equal (%d != %d)",y.length,x.length));
}
double[][] xData = new double[x.length][];
for (int i = 0; i < x.length; i++) {
// the implementation determines how to produce a vector of predictors from a single x
xData[i] = xVector(x[i]);
}
if(logY()) { // in some models we are predicting ln y, so we replace each y with ln y
y = Arrays.copyOf(y, y.length); // user might not be finished with the array we were given
for (int i = 0; i < x.length; i++) {
y[i] = Math.log(y[i]);
}
}
OLSMultipleLinearRegression ols = new OLSMultipleLinearRegression();
ols.setNoIntercept(true); // let the implementation include a constant in xVector if desired
ols.newSampleData(y, xData); // provide the data to the model
coef = MatrixUtils.createColumnRealMatrix(ols.estimateRegressionParameters()); // get our coefs
}
@Override
public double predict(double x) {
double yhat = coef.preMultiply(xVector(x))[0]; // apply coefs to xVector
if (logY()) yhat = (Math.exp(yhat)); // if we predicted ln y, we still need to get y
return yhat;
}
}
多项式或线性模型的实现:
(对于线性模型,只需在调用构造函数时将度数设置为 1。
public class PolyTrendLine extends OLSTrendLine {
final int degree;
public PolyTrendLine(int degree) {
if (degree < 0) throw new IllegalArgumentException("The degree of the polynomial must not be negative");
this.degree = degree;
}
protected double[] xVector(double x) { // {1, x, x*x, x*x*x, ...}
double[] poly = new double[degree+1];
double xi=1;
for(int i=0; i<=degree; i++) {
poly[i]=xi;
xi*=x;
}
return poly;
}
@Override
protected boolean logY() {return false;}
}
指数模型和幂模型甚至更容易:
(注意:我们现在预测log y - 这很重要。这两者都只适用于正 y)
public class ExpTrendLine extends OLSTrendLine {
@Override
protected double[] xVector(double x) {
return new double[]{1,x};
}
@Override
protected boolean logY() {return true;}
}
和
public class PowerTrendLine extends OLSTrendLine {
@Override
protected double[] xVector(double x) {
return new double[]{1,Math.log(x)};
}
@Override
protected boolean logY() {return true;}
}
和日志模型:
(它采用 x 的对数,但预测 y,而不是 ln y)
public class LogTrendLine extends OLSTrendLine {
@Override
protected double[] xVector(double x) {
return new double[]{1,Math.log(x)};
}
@Override
protected boolean logY() {return false;}
}
你可以像这样使用它:
public static void main(String[] args) {
TrendLine t = new PolyTrendLine(2);
Random rand = new Random();
double[] x = new double[1000*1000];
double[] err = new double[x.length];
double[] y = new double[x.length];
for (int i=0; i<x.length; i++) { x[i] = 1000*rand.nextDouble(); }
for (int i=0; i<x.length; i++) { err[i] = 100*rand.nextGaussian(); }
for (int i=0; i<x.length; i++) { y[i] = x[i]*x[i]+err[i]; } // quadratic model
t.setValues(y,x);
System.out.println(t.predict(12)); // when x=12, y should be... , eg 143.61380202745192
}
由于您只想要趋势线,因此在完成测试后,我忽略了 ols 模型,但您可能希望保留一些关于拟合优度等的数据。
对于使用移动平均线,移动中位数等的实现,看起来你可以坚持使用公共数学。尝试描述性统计并指定一个窗口。您可能希望使用其他答案中建议的插值进行一些平滑处理。