Apache Spark 将示例与 Java 连接起来

2022-09-04 21:39:07

我对Apache Spark很陌生。我实际上想专注于基本的Spark API规范,并希望使用Spark API了解和编写一些程序。我使用Apache Spark编写了一个java程序来实现Joilions概念。

当我使用 Left Outer Join -- leftOuterJoin() 或 Right Outer Join -- rightOuterJoin() 时,这两种方法都返回一个 JavaPairRDD,其中包含一个特殊类型的 Google Options。但我不知道如何从可选类型中提取原始值。

无论如何,我想知道我可以使用相同的连接方法,以我自己的格式返回数据。我没有找到任何方法来做到这一点。意思是当我使用Apache Spark时,我无法以自己的风格自定义代码,因为他们已经给出了所有预定义的东西。

请在下面找到代码

my 2 sample input datasets

customers_data.txt:
4000001,Kristina,Chung,55,Pilot
4000002,Paige,Chen,74,Teacher
4000003,Sherri,Melton,34,Firefighter

and

trasaction_data.txt
00000551,12-30-2011,4000001,092.88,Games,Dice & Dice Sets,Buffalo,New York,credit
00004811,11-10-2011,4000001,180.35,Outdoor Play Equipment,Water Tables,Brownsville,Texas,credit
00034388,09-11-2011,4000002,020.55,Team Sports,Beach Volleyball,Orange,California,cash
00008996,11-21-2011,4000003,121.04,Outdoor Recreation,Fishing,Colorado Springs,Colorado,credit
00009167,05-24-2011,4000003,194.94,Exercise & Fitness,Foam Rollers,El Paso,Texas,credit

这是我的Java代码

**SparkJoins.java:**

public class SparkJoins {

    @SuppressWarnings("serial")
    public static void main(String[] args) throws FileNotFoundException {
        JavaSparkContext sc = new JavaSparkContext(new SparkConf().setAppName("Spark Count").setMaster("local"));
        JavaRDD<String> customerInputFile = sc.textFile("C:/path/customers_data.txt");
        JavaPairRDD<String, String> customerPairs = customerInputFile.mapToPair(new PairFunction<String, String, String>() {
            public Tuple2<String, String> call(String s) {
                String[] customerSplit = s.split(",");
                return new Tuple2<String, String>(customerSplit[0], customerSplit[1]);
            }
        }).distinct();

        JavaRDD<String> transactionInputFile = sc.textFile("C:/path/transactions_data.txt");
        JavaPairRDD<String, String> transactionPairs = transactionInputFile.mapToPair(new PairFunction<String, String, String>() {
            public Tuple2<String, String> call(String s) {
                String[] transactionSplit = s.split(",");
                return new Tuple2<String, String>(transactionSplit[2], transactionSplit[3]+","+transactionSplit[1]);
            }
        });

        //Default Join operation (Inner join)
        JavaPairRDD<String, Tuple2<String, String>> joinsOutput = customerPairs.join(transactionPairs);
        System.out.println("Joins function Output: "+joinsOutput.collect());

        //Left Outer join operation
        JavaPairRDD<String, Iterable<Tuple2<String, Optional<String>>>> leftJoinOutput = customerPairs.leftOuterJoin(transactionPairs).groupByKey().sortByKey();
        System.out.println("LeftOuterJoins function Output: "+leftJoinOutput.collect());

        //Right Outer join operation
        JavaPairRDD<String, Iterable<Tuple2<Optional<String>, String>>> rightJoinOutput = customerPairs.rightOuterJoin(transactionPairs).groupByKey().sortByKey();
        System.out.println("RightOuterJoins function Output: "+rightJoinOutput.collect());

        sc.close();
    }
}

这里是我得到的输出

Joins function Output: [(4000001,(Kristina,092.88,12-30-2011)), (4000001,(Kristina,180.35,11-10-2011)), (4000003,(Sherri,121.04,11-21-2011)), (4000003,(Sherri,194.94,05-24-2011)), (4000002,(Paige,020.55,09-11-2011))]

LeftOuterJoins function Output: [(4000001,[(Kristina,Optional.of(092.88,12-30-2011)), (Kristina,Optional.of(180.35,11-10-2011))]), (4000002,[(Paige,Optional.of(020.55,09-11-2011))]), (4000003,[(Sherri,Optional.of(121.04,11-21-2011)), (Sherri,Optional.of(194.94,05-24-2011))])]

RightOuterJoins function Output: [(4000001,[(Optional.of(Kristina),092.88,12-30-2011), (Optional.of(Kristina),180.35,11-10-2011)]), (4000002,[(Optional.of(Paige),020.55,09-11-2011)]), (4000003,[(Optional.of(Sherri),121.04,11-21-2011), (Optional.of(Sherri),194.94,05-24-2011)])]

我正在Windows平台上运行此程序

请遵守上述输出,并帮助我从可选类型中提取值

提前致谢


答案 1

执行左外联接和右外联接时,可能具有空值。右!

因此,spark 返回 Optional 对象。获得该结果后,您可以将该结果映射到您自己的格式。

您可以使用可选的 isPresent() 方法来映射您的数据。

下面是示例:

 JavaPairRDD<String,String> firstRDD = ....
 JavaPairRDD<String,String> secondRDD =....
 // join both rdd using left outerjoin
 JavaPairRDD<String, Tuple2<String, Optional<Boolean>>> rddWithJoin = firstRDD.leftOuterJoin(secondRDD);


// mapping of join result
JavaPairRDD<String, String> mappedRDD = rddWithJoin
            .mapToPair(tuple -> {
                if (tuple._2()._2().isPresent()) {
                    //do your operation and return
                    return new Tuple2<String, String>(tuple._1(), tuple._2()._1());
                } else {
                    return new Tuple2<String, String>(tuple._1(), "not present");
                }
            });

答案 2

在Java中,我们还可以使用DataFrames实现JOIN,如下所示:

1) 创建火花会话作为:

SparkSession spark = SparkSession.builder().appName("JoinsInSpark").master("local").getOrCreate();

2) 我已将员工输入内容视为:

101,艾伦,富兰克林街,墨尔本,昆士兰州

104,斯图尔特,朗斯代尔街,悉尼,新南威尔士州

将数据帧创建为:

Dataset<Employee> e_data = spark
                        .read()
                        .textFile("C:/XX/XX/test.txt")
                        .map(line -> {
                            Employee e = new Employee();
                            String[] parts = line.split(",");
                            e.setE_id(Integer.valueOf(parts[0].trim()));
                            e.setE_name(parts[1].trim());
                            e.setAddress(parts[2].trim());
                            e.setCity(parts[3].trim());
                            e.setState(parts[4].trim());
                            return e;
                        }, Encoders.bean(Employee.class));

其中 Employee 是包含 setter、getter 和构造函数的 POJO 类。

3)类似地为第二个表创建另一个DF(比如工资)

4) 对两个视图的不同元素应用 INNER 连接:

Dataset<Row> d1 = e_data.distinct().join(s_data.distinct(), "e_id").orderBy("salary");

d1.show();

5)类似,左外连接为:

spark.sql("select * from global_temp.employee e LEFT OUTER JOIN global_temp.salary s on e.e_id = s.e_id").show();

推荐