在 Java 中将 double 转换为 BigDecimal

2022-09-01 21:20:17

我写了一个Java程序,用于计算黎曼Zeta函数的值。在程序内部,我制作了一个库来计算必要的复杂函数,如atan,cos等。两个程序中的所有内容都通过 和 数据类型进行访问。这在评估 Zeta 函数的大值时会产生重大问题。doubleBigDecimal

Zeta 函数参考的数值近似值

在高值下直接评估此近似值会产生问题,当具有大型复杂形式时,例如 .我非常感谢在这里获得有关这方面的信息。的评估会产生错误,因为我在方法中写错了什么。ss = (230+30i)S2.minus(S1)adaptiveQuad

例如,通过此程序生成Zeta(2+3i)

Calculation of the Riemann Zeta Function in the form Zeta(s) = a + ib.

Enter the value of [a] inside the Riemann Zeta Function: 2
Enter the value of [b] inside the Riemann Zeta Function: 3
The value for Zeta(s) is 7.980219851133409E-1 - 1.137443081631288E-1*i
Total time taken is 0.469 seconds.

这是正确的

Zeta(100+0i)生成

Calculation of the Riemann Zeta Function in the form Zeta(s) = a + ib.

Enter the value of [a] inside the Riemann Zeta Function: 100
Enter the value of [b] inside the Riemann Zeta Function: 0
The value for Zeta(s) is 1.000000000153236E0
Total time taken is 0.672 seconds.

Wolfram相比,这也是正确的。问题是由于方法内部标记的东西。adaptiveQuad

Zeta(230+30i)生成

Calculation of the Riemann Zeta Function in the form Zeta(s) = a + ib.

Enter the value of [a] inside the Riemann Zeta Function: 230
Enter the value of [b] inside the Riemann Zeta Function: 30
The value for Zeta(s) is 0.999999999999093108519845391615339162047254997503854254342793916541606842461539820124897870147977114468145672577664412128509813042591501204781683860384769321084473925620572315416715721728082468412672467499199310913504362891199180150973087384370909918493750428733837552915328069343498987460727711606978118652477860450744628906250 - 38.005428584222228490409289204403133867487950535704812764806874887805043029499897666636162309572126423385487374863788363786029170239477119910868455777891701471328505006916099918492113970510619110472506796418206225648616641319533972054228283869713393805956289770456519729094756021581247296126093715429306030273437500E-15*i
Total time taken is 1.746 seconds.

Wolfram相比,虚构的部分有点偏离。

评估积分的算法称为自适应正交此处提供了 Java 实现。自适应四元组方法应用以下内容double

// adaptive quadrature
public static double adaptive(double a, double b) {
    double h = b - a;
    double c = (a + b) / 2.0;
    double d = (a + c) / 2.0;
    double e = (b + c) / 2.0;
    double Q1 = h/6  * (f(a) + 4*f(c) + f(b));
    double Q2 = h/12 * (f(a) + 4*f(d) + 2*f(c) + 4*f(e) + f(b));
    if (Math.abs(Q2 - Q1) <= EPSILON)
        return Q2 + (Q2 - Q1) / 15;
    else
        return adaptive(a, c) + adaptive(c, b);
}

这是我第四次尝试编写程序

/**************************************************************************
**
**    Abel-Plana Formula for the Zeta Function
**
**************************************************************************
**    Axion004
**    08/16/2015
**
**    This program computes the value for Zeta(z) using a definite integral
**    approximation through the Abel-Plana formula. The Abel-Plana formula
**    can be shown to approximate the value for Zeta(s) through a definite
**    integral. The integral approximation is handled through the Composite
**    Simpson's Rule known as Adaptive Quadrature.
**************************************************************************/

import java.util.*;
import java.math.*;


public class AbelMain5 extends Complex {
    private static MathContext MC = new MathContext(512,
            RoundingMode.HALF_EVEN);
    public static void main(String[] args) {
        AbelMain();
    }

    // Main method
    public static void AbelMain() {
        double re = 0, im = 0;
        double start, stop, totalTime;
        Scanner scan = new Scanner(System.in);
        System.out.println("Calculation of the Riemann Zeta " +
                "Function in the form Zeta(s) = a + ib.");
        System.out.println();
        System.out.print("Enter the value of [a] inside the Riemann Zeta " +
                "Function: ");
        try {
                re = scan.nextDouble();
        }
        catch (Exception e) {
           System.out.println("Please enter a valid number for a.");
        }
        System.out.print("Enter the value of [b] inside the Riemann Zeta " +
                "Function: ");
        try {
                im = scan.nextDouble();
        }
        catch (Exception e) {
           System.out.println("Please enter a valid number for b.");
        }
        start = System.currentTimeMillis();
        Complex z = new Complex(new BigDecimal(re), new BigDecimal(im));
        System.out.println("The value for Zeta(s) is " + AbelPlana(z));
        stop = System.currentTimeMillis();
        totalTime = (double) (stop-start) / 1000.0;
        System.out.println("Total time taken is " + totalTime + " seconds.");
    }

    /**
     * The definite integral for Zeta(z) in the Abel-Plana formula.
         * <br> Numerator = Sin(z * arctan(t))
         * <br> Denominator = (1 + t^2)^(z/2) * (e^(2*pi*t) - 1)
     * @param t - the value of t passed into the integrand.
         * @param z - The complex value of z = a + i*b
     * @return the value of the complex function.
    */
    public static Complex f(double t, Complex z) {
        Complex num = (z.multiply(Math.atan(t))).sin();
        Complex D1 = new Complex(1 + t*t).pow(z.divide(TWO));
        Complex D2 = new Complex(Math.pow(Math.E, 2.0*Math.PI*t) - 1.0);
        Complex den = D1.multiply(D2);
        return num.divide(den, MC);
    }

    /**
     * Adaptive quadrature - See http://www.mathworks.com/moler/quad.pdf
     * @param a - the lower bound of integration.
         * @param b - the upper bound of integration.
         * @param z - The complex value of z = a + i*b
     * @return the approximate numerical value of the integral.
    */
    public static Complex adaptiveQuad(double a, double b, Complex z) {
        double EPSILON = 1E-10;
        double step = b - a;
        double c = (a + b) / 2.0;
        double d = (a + c) / 2.0;
        double e = (b + c) / 2.0;

        Complex S1 = (f(a, z).add(f(c, z).multiply(FOUR)).add(f(b, z))).
                multiply(step / 6.0);
        Complex S2 = (f(a, z).add(f(d, z).multiply(FOUR)).add(f(c, z).multiply
                (TWO)).add(f(e, z).multiply(FOUR)).add(f(b, z))).multiply
                (step / 12.0);
        Complex result = (S2.subtract(S1)).divide(FIFTEEN, MC);

        if(S2.subtract(S1).mod() <= EPSILON)
            return S2.add(result);
        else
            return adaptiveQuad(a, c, z).add(adaptiveQuad(c, b, z));
    }

    /**
     * The definite integral for Zeta(z) in the Abel-Plana formula.
         * <br> value =  1/2 + 1/(z-1) + 2 * Integral
         * @param z - The complex value of z = a + i*b
     * @return the value of Zeta(z) through value and the
         * quadrature approximation.
    */
    public static Complex AbelPlana(Complex z) {
        Complex C1 = ONEHALF.add(ONE.divide(z.subtract(ONE), MC));
        Complex C2  =  TWO.multiply(adaptiveQuad(1E-16, 100.0, z));
        if ( z.real().doubleValue() == 0 && z.imag().doubleValue() == 0)
            return new Complex(0.0, 0.0);
        else
            return C1.add(C2);
    }

}

复数(BigDecimal)

/**************************************************************************
**
**    Complex Numbers
**
**************************************************************************
**    Axion004
**    08/20/2015
**
**    This class is necessary as a helper class for the calculation of
**    imaginary numbers. The calculation of Zeta(z) inside AbelMain is in
**    the form of z = a + i*b.
**************************************************************************/

import java.math.BigDecimal;
import java.math.MathContext;
import java.text.DecimalFormat;
import java.text.NumberFormat;

public class Complex extends Object{
    private BigDecimal re;
    private BigDecimal im;

    /**
        BigDecimal constant for zero
    */
    final static Complex ZERO = new Complex(BigDecimal.ZERO) ;

    /**
        BigDecimal constant for one half
    */
    final static Complex ONEHALF = new Complex(new BigDecimal(0.5));

    /**
        BigDecimal constant for one
    */
    final static Complex ONE = new Complex(BigDecimal.ONE);

    /**
        BigDecimal constant for two
    */
    final static Complex TWO = new Complex(new BigDecimal(2.0));

    /**
        BigDecimal constant for four
    */
    final static Complex FOUR = new Complex(new BigDecimal(4.0)) ;

    /**
        BigDecimal constant for fifteen
    */
    final static Complex FIFTEEN = new Complex(new BigDecimal(15.0)) ;

    /**
        Default constructor equivalent to zero
    */
    public Complex() {
        re = BigDecimal.ZERO;
        im = BigDecimal.ZERO;
    }

    /**
        Constructor with real part only
        @param x Real part, BigDecimal
    */
    public Complex(BigDecimal x) {
        re = x;
        im = BigDecimal.ZERO;
    }

    /**
        Constructor with real part only
        @param x Real part, double
    */
    public Complex(double x) {
        re = new BigDecimal(x);
        im = BigDecimal.ZERO;
    }

    /**
        Constructor with real and imaginary parts in double format.
        @param x Real part
        @param y Imaginary part
    */
    public Complex(double x, double y) {
        re= new BigDecimal(x);
        im= new BigDecimal(y);
    }

    /**
        Constructor for the complex number z = a + i*b
        @param re Real part
        @param im Imaginary part
    */
    public Complex (BigDecimal re, BigDecimal im) {
        this.re = re;
        this.im = im;
    }

    /**
        Real part of the Complex number
        @return Re[z] where z = a + i*b.
    */
    public BigDecimal real() {
        return re;
    }

    /**
        Imaginary part of the Complex number
        @return Im[z] where z = a + i*b.
    */
    public BigDecimal imag() {
        return im;
    }

    /**
        Complex conjugate of the Complex number
        in which the conjugate of z is z-bar.
        @return z-bar where z = a + i*b and z-bar = a - i*b
    */
    public Complex conjugate() {
        return new Complex(re, im.negate());
    }

    /**
     * Returns the sum of this and the parameter.

       @param augend the number to add
       @param mc the context to use
       @return this + augend
     */
    public Complex add(Complex augend,MathContext mc)
    {
        //(a+bi)+(c+di) = (a + c) + (b + d)i
        return new Complex(
            re.add(augend.re,mc),
            im.add(augend.im,mc));
    }

    /**
       Equivalent to add(augend, MathContext.UNLIMITED)
       @param augend the number to add
       @return this + augend
     */
    public Complex add(Complex augend)
    {
        return add(augend, MathContext.UNLIMITED);
    }

    /**
        Addition of Complex number and a double.
        @param d is the number to add.
        @return z+d where z = a+i*b and d = double
    */
    public Complex add(double d){
        BigDecimal augend = new BigDecimal(d);
        return new Complex(this.re.add(augend, MathContext.UNLIMITED),
                this.im);
    }

    /**
     * Returns the difference of this and the parameter.
       @param subtrahend the number to subtract
       @param mc the context to use
       @return this - subtrahend
     */
    public Complex subtract(Complex subtrahend, MathContext mc)
    {
        //(a+bi)-(c+di) = (a - c) + (b - d)i
        return new Complex(
            re.subtract(subtrahend.re,mc),
            im.subtract(subtrahend.im,mc));
    }

    /**
     * Equivalent to subtract(subtrahend, MathContext.UNLIMITED)
       @param subtrahend the number to subtract
       @return this - subtrahend
     */
    public Complex subtract(Complex subtrahend)
    {
        return subtract(subtrahend,MathContext.UNLIMITED);
    }

    /**
        Subtraction of Complex number and a double.
        @param d is the number to subtract.
        @return z-d where z = a+i*b and d = double
    */
    public Complex subtract(double d){
        BigDecimal subtrahend = new BigDecimal(d);
        return new Complex(this.re.subtract(subtrahend, MathContext.UNLIMITED),
                this.im);
    }

    /**
     * Returns the product of this and the parameter.
       @param multiplicand the number to multiply by
       @param mc the context to use
       @return this * multiplicand
     */
    public Complex multiply(Complex multiplicand, MathContext mc)
    {
        //(a+bi)(c+di) = (ac - bd) + (ad + bc)i
        return new Complex(
            re.multiply(multiplicand.re,mc).subtract(im.multiply
                (multiplicand.im,mc),mc),
            re.multiply(multiplicand.im,mc).add(im.multiply
                (multiplicand.re,mc),mc));
    }

    /**
       Equivalent to multiply(multiplicand, MathContext.UNLIMITED)
       @param multiplicand the number to multiply by
       @return this * multiplicand
     */
    public Complex multiply(Complex multiplicand)
    {
        return multiply(multiplicand,MathContext.UNLIMITED);
    }

    /**
        Complex multiplication by a double.
        @param d is the double to multiply by.
        @return z*d where z = a+i*b and d = double
    */
    public Complex multiply(double d){
        BigDecimal multiplicand = new BigDecimal(d);
        return new Complex(this.re.multiply(multiplicand, MathContext.UNLIMITED)
                ,this.im.multiply(multiplicand, MathContext.UNLIMITED));
    }

    /**
        Modulus of a Complex number or the distance from the origin in
        * the polar coordinate plane.
        @return |z| where z = a + i*b.
    */
    public double mod() {
        if ( re.doubleValue() != 0.0 || im.doubleValue() != 0.0)
            return Math.sqrt(re.multiply(re).add(im.multiply(im))
                    .doubleValue());
        else
            return 0.0;
    }

    /**
     * Modulus of a Complex number squared
     * @param z = a + i*b
     * @return |z|^2 where z = a + i*b
    */
    public double abs(Complex z) {
        double doubleRe = re.doubleValue();
        double doubleIm = im.doubleValue();
        return doubleRe * doubleRe + doubleIm * doubleIm;
    }

    public Complex divide(Complex divisor)
    {
        return divide(divisor,MathContext.UNLIMITED);
    }

    /**
        * The absolute value squared.
        * @return The sum of the squares of real and imaginary parts.
        * This is the square of Complex.abs() .
        */
    public BigDecimal norm()
    {
                return re.multiply(re).add(im.multiply(im)) ;
    }

    /**
        * The absolute value of a BigDecimal.
        * @param mc amount of precision
        * @return BigDecimal.abs()
        */
    public BigDecimal abs(MathContext mc)
    {
                return BigDecimalMath.sqrt(norm(),mc) ;
    }

    /** The inverse of the the Complex number.
          @param mc amount of precision
          @return 1/this
        */
    public Complex inverse(MathContext mc)
    {
                final BigDecimal hyp = norm() ;
                /* 1/(x+iy)= (x-iy)/(x^2+y^2 */
                return new Complex( re.divide(hyp,mc), im.divide(hyp,mc)
                        .negate() ) ;
    }

    /** Divide through another BigComplex number.
        @param oth the other complex number
        @param mc amount of precision
        @return this/other
        */
    public Complex divide(Complex oth, MathContext mc)
    {
                /* implementation: (x+iy)/(a+ib)= (x+iy)* 1/(a+ib) */
                return multiply(oth.inverse(mc),mc) ;
    }

   /**
        Division of Complex number by a double.
        @param d is the double to divide
        @return new Complex number z/d where z = a+i*b
    */
    public Complex divide(double d){
        BigDecimal divisor = new BigDecimal(d);
        return new Complex(this.re.divide(divisor, MathContext.UNLIMITED),
                this.im.divide(divisor, MathContext.UNLIMITED));
    }

    /**
        Exponential of a complex number (z is unchanged).
        <br> e^(a+i*b) = e^a * e^(i*b) = e^a * (cos(b) + i*sin(b))
        @return exp(z) where z = a+i*b
    */
    public Complex exp () {
        return new Complex(Math.exp(re.doubleValue()) * Math.cos(im.
                doubleValue()), Math.exp(re.doubleValue()) *
                Math.sin(im.doubleValue()));
    }

     /**
        The Argument of a Complex number or the angle in radians
        with respect to polar coordinates.
        <br> Tan(theta) = b / a, theta = Arctan(b / a)
        <br> a is the real part on the horizontal axis
        <br> b is the imaginary part of the vertical axis
        @return arg(z) where z = a+i*b.
    */
    public double arg() {
        return Math.atan2(im.doubleValue(), re.doubleValue());
    }

    /**
        The log or principal branch of a Complex number (z is unchanged).
        <br> Log(a+i*b) = ln|a+i*b| + i*Arg(z) = ln(sqrt(a^2+b^2))
        * + i*Arg(z) = ln (mod(z)) + i*Arctan(b/a)
        @return log(z) where z = a+i*b
    */
    public Complex log() {
        return new Complex(Math.log(this.mod()), this.arg());
    }

    /**
        The square root of a Complex number (z is unchanged).
        Returns the principal branch of the square root.
        <br> z = e^(i*theta) = r*cos(theta) + i*r*sin(theta)
        <br> r = sqrt(a^2+b^2)
        <br> cos(theta) = a / r, sin(theta) = b / r
        <br> By De Moivre's Theorem, sqrt(z) = sqrt(a+i*b) =
        * e^(i*theta / 2) = r(cos(theta/2) + i*sin(theta/2))
        @return sqrt(z) where z = a+i*b
    */
    public Complex sqrt() {
        double r = this.mod();
        double halfTheta = this.arg() / 2;
        return new Complex(Math.sqrt(r) * Math.cos(halfTheta), Math.sqrt(r) *
                Math.sin(halfTheta));
    }

    /**
        The real cosh function for Complex numbers.
        <br> cosh(theta) = (e^(theta) + e^(-theta)) / 2
        @return cosh(theta)
    */
    private double cosh(double theta) {
        return (Math.exp(theta) + Math.exp(-theta)) / 2;
    }

    /**
        The real sinh function for Complex numbers.
        <br> sinh(theta) = (e^(theta) - e^(-theta)) / 2
        @return sinh(theta)
    */
    private double sinh(double theta) {
        return (Math.exp(theta) - Math.exp(-theta)) / 2;
    }

     /**
        The sin function for the Complex number (z is unchanged).
        <br> sin(a+i*b) = cosh(b)*sin(a) + i*(sinh(b)*cos(a))
        @return sin(z) where z = a+i*b
    */
    public Complex sin() {
        return new Complex(cosh(im.doubleValue()) * Math.sin(re.doubleValue()),
                sinh(im.doubleValue())* Math.cos(re.doubleValue()));
    }

    /**
        The cos function for the Complex number (z is unchanged).
        <br> cos(a +i*b) = cosh(b)*cos(a) + i*(-sinh(b)*sin(a))
        @return cos(z) where z = a+i*b
    */
    public Complex cos() {
        return new Complex(cosh(im.doubleValue()) * Math.cos(re.doubleValue()),
                -sinh(im.doubleValue()) * Math.sin(re.doubleValue()));
    }

    /**
        The hyperbolic sin of the Complex number (z is unchanged).
        <br> sinh(a+i*b) = sinh(a)*cos(b) + i*(cosh(a)*sin(b))
        @return sinh(z) where z = a+i*b
    */
    public Complex sinh() {
        return new Complex(sinh(re.doubleValue()) * Math.cos(im.doubleValue()),
                cosh(re.doubleValue()) * Math.sin(im.doubleValue()));
    }

    /**
        The hyperbolic cosine of the Complex number (z is unchanged).
        <br> cosh(a+i*b) = cosh(a)*cos(b) + i*(sinh(a)*sin(b))
        @return cosh(z) where z = a+i*b
    */
    public Complex cosh() {
        return new Complex(cosh(re.doubleValue()) *Math.cos(im.doubleValue()),
                sinh(re.doubleValue()) * Math.sin(im.doubleValue()));
    }

    /**
        The tan of the Complex number (z is unchanged).
        <br> tan (a+i*b) = sin(a+i*b) / cos(a+i*b)
        @return tan(z) where z = a+i*b
    */
    public Complex tan() {
        return (this.sin()).divide(this.cos());
    }

    /**
        The arctan of the Complex number (z is unchanged).
        <br> tan^(-1)(a+i*b) = 1/2 i*(log(1-i*(a+b*i))-log(1+i*(a+b*i))) =
        <br> -1/2 i*(log(i*a - b+1)-log(-i*a + b+1))
        @return arctan(z) where z = a+i*b
    */
    public Complex atan(){
        Complex ima = new Complex(0.0,-1.0);    //multiply by negative i
        Complex num = new Complex(this.re.doubleValue(),this.im.doubleValue()
                -1.0);
        Complex den = new Complex(this.re.negate().doubleValue(),this.im
                .negate().doubleValue()-1.0);
        Complex two = new Complex(2.0, 0.0);    // divide by 2
        return ima.multiply(num.divide(den).log()).divide(two);
    }

    /**
     * The Math.pow equivalent of two Complex numbers.
     * @param z - the complex base in the form z = a + i*b
     * @return z^y where z = a + i*b and y = c + i*d
    */
    public Complex pow(Complex z){
        Complex a = z.multiply(this.log(), MathContext.UNLIMITED);
        return a.exp();
    }

    /**
     * The Math.pow equivalent of a Complex number to the power
         * of a double.
     * @param d - the double to be taken as the power.
     * @return z^d where z = a + i*b and d = double
    */
     public Complex pow(double d){
         Complex a=(this.log()).multiply(d);
         return a.exp();
     }

    /**
        Override the .toString() method to generate complex numbers, the
        * string representation is now a literal Complex number.
        @return a+i*b, a-i*b, a, or i*b as desired.
    */
    public String toString() {

        NumberFormat formatter = new DecimalFormat();
        formatter = new DecimalFormat("#.###############E0");

        if (re.doubleValue() != 0.0 && im.doubleValue()  > 0.0) {
            return formatter.format(re) + " + " + formatter.format(im)
                    +"*i";
        }
        if (re.doubleValue() !=0.0 && im.doubleValue() < 0.0) {
            return formatter.format(re) + " - "+ formatter.format(im.negate())
                    + "*i";
        }
        if (im.doubleValue() == 0.0) {
            return formatter.format(re);
        }
        if (re.doubleValue() == 0.0) {
            return formatter.format(im) + "*i";
        }
        return formatter.format(re) + " + i*" + formatter.format(im);
    }
}

我正在审查下面的答案。

一个问题可能是由于

Complex num = (z.multiply(Math.atan(t))).sin();
Complex D1 = new Complex(1 + t*t).pow(z.divide(TWO));
Complex D2 = new Complex(Math.pow(Math.E, 2.0*Math.PI*t) - 1.0);
Complex den = D1.multiply(D2, MathContext.UNLIMITED);

我没有申请.虽然,我不认为这是导致浮点算术产生差异的直接问题。BigDecimal.pow(BigDecimal)

编辑:我尝试了Zeta函数的新积分近似。最终,我将开发一种新的计算方法。BigDecimal.pow(BigDecimal)


答案 1

警告我同意@laune答案中的所有评论,但我得到的印象是,无论如何,您可能希望继续这样做。特别是确保你真的理解1)以及这对你意味着什么 - 很容易做很多繁重的计算来产生无意义的结果。


Java 中的任意精度浮点函数

重申一下,我认为你的问题确实在于你选择的数学和数值方法,但这是一个使用Apfloat库的实现。我强烈建议您使用现成的任意精度库(或类似的库),因为它避免了您“滚动自己的”任意精度数学函数(例如,,等)的任何需求。你说powexpsinatan

最终,我将开发一种计算BigDecimal.pow(BigDecimal)的新方法。

真的很难做到这一点。

您还需要注意常量的精度 - 注意我使用Apfloat示例实现来计算sig无花果的大数(对于大的某种定义!)。我在某种程度上相信Apfloat库在幂中使用适当精确的值 - 如果要检查,源代码是可用的。PIe


计算zeta的不同积分公式

您在其中一次编辑中提出了三种不同的基于集成的方法:enter image description here
标记为25.5.12的方法就是您当前在问题中拥有的方法,并且(尽管可以很容易地在零处计算),但由于2)很难使用@laune的答案。我在代码中实现了25.5.12 - 我敦促您用范围来绘制它,以了解它的行为方式。或者看看zeta文章中关于Wolfram数学世界的情节。标记为25.5.11的那个我通过实现的代码和我在下面发布的配置中的代码。integrand1()ts = a + 0iintegrand2()


法典

虽然我有点不愿意发布代码,但由于上述所有事情,毫无疑问会在某些配置中发现错误的结果 - 我已经在下面对您要执行的操作进行了编码,对变量使用任意精度的浮点对象。

如果你想改变你使用的公式(例如,从25.5.11到25.5.12),你可以改变包装器函数返回的积分,或者更好的是,改变一个任意积分方法包裹在一个带有接口...如果要使用其他积分公式之一,您还必须更改算术。f()adaptiveQuadclassfindZeta()

在开始时玩常量,尽情满足。我没有测试很多组合,因为我认为这里的数学问题优先于编程问题。

我已经设置了大约2000次对自适应正交方法的调用,并匹配Wolfram值的前15位左右。2+3i

我已经测试过它仍然适用于 和 。该程序与您提供的三个测试用例的前 18 个左右的有效数字中的 Wolfram alpha 相匹配。最后一个()即使在快速的计算机上也需要很长时间 - 它调用积分函数大约100,000 +次。请注意,我用于积分中的值 - 不是很高 - 但较高的值表现出问题1)如前所述...PRECISION = 120lEPSILON=1e-15230+30i40INFINITY

注意:贝这并不(你将以分钟或小时为单位进行测量,而不是以秒为单位 - 但只有当你想像大多数人一样接受10^-15 ~= 10^-70时,你才会变得非常快!)。它将为您提供一些与 Wolfram Alpha 匹配的数字;)您可能希望将大约,到和验证一些结果与小的第一...我留下了一些印刷品,所以它告诉你每100次就需要舒适。PRECISION20INFINITY10EPSILON1e-10sadaptiveQuad

重申无论你的精度有多好 - 它都不会克服这种计算zeta的方式所涉及的函数的数学特征。例如,我强烈怀疑 Wolfram alpha 就是这样做的。查找序列求和方法,如果需要更易于处理的方法。


import java.io.PrintWriter;
import org.apfloat.ApcomplexMath;
import org.apfloat.Apcomplex;
import org.apfloat.Apfloat;
import org.apfloat.samples.Pi;

public class ZetaFinder
{
    //Number of sig figs accuracy.  Note that infinite should be reserved
    private static long PRECISION = 40l; 
    // Convergence criterion for integration
    static Apfloat EPSILON = new Apfloat("1e-15",PRECISION);

    //Value of PI - enhanced using Apfloat library sample calculation of Pi in constructor,
    //Fast enough that we don't need to hard code the value in.
    //You could code hard value in for perf enhancement
    static Apfloat PI = null; //new Apfloat("3.14159"); 

    //Integration limits - I found too high a value for "infinity" causes integration
    //to terminate on first iteration.  Plot the integrand to see why...
    static Apfloat INFINITE_LIMIT = new Apfloat("40",PRECISION);
    static Apfloat ZERO_LIMIT = new Apfloat("1e-16",PRECISION); //You can use zero for the 25.5.12

    static Apfloat one = new Apfloat("1",PRECISION);
    static Apfloat two = new Apfloat("2",PRECISION);
    static Apfloat four = new Apfloat("4",PRECISION);
    static Apfloat six = new Apfloat("6",PRECISION);
    static Apfloat twelve = new Apfloat("12",PRECISION);
    static Apfloat fifteen = new Apfloat("15",PRECISION);

    static int counter = 0;

    Apcomplex s = null;

    public ZetaFinder(Apcomplex s)
    {
        this.s = s;
        Pi.setOut(new PrintWriter(System.out, true));
        Pi.setErr(new PrintWriter(System.err, true));
        PI = (new Pi.RamanujanPiCalculator(PRECISION+10, 10)).execute(); //Get Pi to a higher precision than integer consts
        System.out.println("Created a Zeta Finder based on Abel-Plana for s="+s.toString() + " using PI="+PI.toString());
    }

    public static void main(String[] args)
    {
        Apfloat re = new Apfloat("2", PRECISION);
        Apfloat im = new Apfloat("3", PRECISION);
        Apcomplex s = new Apcomplex(re,im);

        ZetaFinder finder = new ZetaFinder(s);

        System.out.println(finder.findZeta());
    }

    private Apcomplex findZeta()
    {
        Apcomplex retval = null;

        //Method currently in question (a.k.a. 25.5.12)
        //Apcomplex mult = ApcomplexMath.pow(two, this.s);
        //Apcomplex firstterm = (ApcomplexMath.pow(two, (this.s.add(one.negate())))).divide(this.s.add(one.negate()));

        //Easier integrand method (a.k.a. 25.5.11)
        Apcomplex mult = two;
        Apcomplex firstterm = (one.divide(two)).add(one.divide(this.s.add(one.negate())));

        Apfloat limita = ZERO_LIMIT;//Apfloat.ZERO;
        Apfloat limitb = INFINITE_LIMIT;
        System.out.println("Trying to integrate between " + limita.toString() + " and " + limitb.toString());
        Apcomplex integral = adaptiveQuad(limita, limitb);
        retval = firstterm.add((mult.multiply(integral)));
        return retval;
    }

    private Apcomplex adaptiveQuad(Apfloat a, Apfloat b) {
        //if (counter % 100 == 0)
        {
            System.out.println("In here for the " + counter + "th time");
        }
        counter++;
        Apfloat h = b.add(a.negate());
        Apfloat c = (a.add(b)).divide(two);
        Apfloat d = (a.add(c)).divide(two);
        Apfloat e = (b.add(c)).divide(two);

        Apcomplex Q1 = (h.divide(six)).multiply(f(a).add(four.multiply(f(c))).add(f(b)));
        Apcomplex Q2 = (h.divide(twelve)).multiply(f(a).add(four.multiply(f(d))).add(two.multiply(f(c))).add(four.multiply(f(e))).add(f(b)));
        if (ApcomplexMath.abs(Q2.add(Q1.negate())).compareTo(EPSILON) < 0)
        {
            System.out.println("Returning");
            return Q2.add((Q2.add(Q1.negate())).divide(fifteen));
        }
        else
        {
            System.out.println("Recursing with intervals "+a+" to " + c + " and " + c + " to " +d);
            return adaptiveQuad(a, c).add(adaptiveQuad(c, b));
        }
    }

    private Apcomplex f(Apfloat x)
    {
        return integrand2(x);
    }

    /*
     * Simple test integrand (z^2)
     * 
     * Can test implementation by asserting that the adaptiveQuad
     * with this function evaluates to z^3 / 3
     */
    private Apcomplex integrandTest(Apfloat t)
    {
        return ApcomplexMath.pow(t, two);
    }

    /*
     * Abel-Plana formulation integrand
     */
    private Apcomplex integrand1(Apfloat t)
    {
        Apcomplex numerator = ApcomplexMath.sin(this.s.multiply(ApcomplexMath.atan(t)));
        Apcomplex bottomlinefirstbr = one.add(ApcomplexMath.pow(t, two));
        Apcomplex D1 = ApcomplexMath.pow(bottomlinefirstbr, this.s.divide(two));
        Apcomplex D2 = (ApcomplexMath.exp(PI.multiply(t))).add(one);    
        Apcomplex denominator = D1.multiply(D2);
        Apcomplex retval = numerator.divide(denominator);       
        //System.out.println("Integrand evaluated at "+t+ " is "+retval);
        return retval;
    }

    /*
     * Abel-Plana formulation integrand 25.5.11 
     */
    private Apcomplex integrand2(Apfloat t)
    {
        Apcomplex numerator = ApcomplexMath.sin(this.s.multiply(ApcomplexMath.atan(t)));
        Apcomplex bottomlinefirstbr = one.add(ApcomplexMath.pow(t, two));
        Apcomplex D1 = ApcomplexMath.pow(bottomlinefirstbr, this.s.divide(two));
        Apcomplex D2 = ApcomplexMath.exp(two.multiply(PI.multiply(t))).add(one.negate());    
        Apcomplex denominator = D1.multiply(D2);
        Apcomplex retval = numerator.divide(denominator);       
        //System.out.println("Integrand evaluated at "+t+ " is "+retval);
        return retval;
    }
}

关于“正确性”的说明

请注意,在你的答案中 - 与Wolfram相比,当它们分别表现出~和~的错误时,你是在呼叫和“正确”(它们在第10位和第9位小数中有所不同),但你担心,因为它在虚部中表现出顺序错误(vs两者都非常接近零)。因此,从某种意义上说,你称之为“错误”的那个比你称之为“正确”的值更接近 Wolfram 值。也许你担心前导数字是不同的,但这并不是衡量准确性的指标。zeta(2+3i)zeta(100)1e-101e-9zeta(230+30i)10e-1438e-155e-70


最后一点

除非您这样做是为了了解函数的行为方式以及浮点精度如何与之交互 - 否则不要以这种方式做事。甚至Apfloat自己的文档也说:

该封装专为极高的精度而设计。结果可能比您预期的少几位数(约10位),并且结果中的最后几位(约10位)数字可能不准确。如果您计划使用只有几百位数字的数字,请使用像PARI这样的程序(它是免费的,可以从 ftp://megrez.math.u-bordeaux.fr 获得)或像Mathematica或Maple这样的商业程序(如果可能的话)。

我现在会将python中的mpmath作为免费的替代方案添加到此列表中。


答案 2

(1) 集成使用 adaptQuad,从区间 [0,10] 开始。对于值越来越大的 a 和 b=0 的 z=a+ib,积分是一个越来越振荡的函数,仅 [0,5] 中的零数就与 a 成正比,并且对于 z=100,则增加到 43。

因此,从包含一个或多个零的区间开始近似是有风险的,正如发布的程序非常清楚地显示的那样。对于 z=100,积分分别为 0、-2.08E-78 和 7.12E-115,分别为 0、5 和 10。因此,将辛普森公式的结果与1E-20进行比较返回为真,结果是绝对错误的。

(2)方法AbelPlana的计算涉及两个复数,C1和C2。对于 z=a+0i,它们是实数,下表显示了 a 的各种值的值:

  a    C1          C2
 10    5.689E1     1.024E3
 20    2.759E4     1.048E6
 30    1.851E7     1.073E9
 40    1.409E10    1.099E12
 60    9.770E15    1.152E18
100    6.402E27    1.267E30

现在我们知道,ζ(a+0i) 的值会降低到 1 以增加 a。显然,两个高于 1E15 的值在彼此相减时不可能在一个值附近产生有意义的结果。

该表还表明,要获得使用此算法ζ(a+0i)的良好结果,需要以大约45位有效数字的精度计算C1和C2 *I(I是积分)。(任意精度的数学运算并不能避免(1)中描述的陷阱。

(3) 请注意,当使用任意精度的库时,E 和 PI 等值应提供比 java.lang.Math 中的双精度值更好的精度。

编辑 (25.5.11) 在 [0,10] 中的零数与 (25.5.12) 相同。0 的计算很棘手,但它不是奇点。它确实避免了问题(2)。


推荐