大十进制数的对数
如何计算大十进制数的对数?有谁知道我可以使用的任何算法?
到目前为止,我的谷歌搜索已经提出了一个(无用的)想法,即转换为双精度并使用Math.log。
我将提供所需答案的精确性。
编辑:任何基地都可以。如果以x为基数更容易,我会这样做。
如何计算大十进制数的对数?有谁知道我可以使用的任何算法?
到目前为止,我的谷歌搜索已经提出了一个(无用的)想法,即转换为双精度并使用Math.log。
我将提供所需答案的精确性。
编辑:任何基地都可以。如果以x为基数更容易,我会这样做。
Java Number Cruncher:Java Programmer's Guide to Numeric Computing提供了一个使用牛顿方法的解决方案。本书的源代码可在此处获取。以下内容摘自第12.5章大十进制函数(p330和p331):
/**
* Compute the natural logarithm of x to a given scale, x > 0.
*/
public static BigDecimal ln(BigDecimal x, int scale)
{
// Check that x > 0.
if (x.signum() <= 0) {
throw new IllegalArgumentException("x <= 0");
}
// The number of digits to the left of the decimal point.
int magnitude = x.toString().length() - x.scale() - 1;
if (magnitude < 3) {
return lnNewton(x, scale);
}
// Compute magnitude*ln(x^(1/magnitude)).
else {
// x^(1/magnitude)
BigDecimal root = intRoot(x, magnitude, scale);
// ln(x^(1/magnitude))
BigDecimal lnRoot = lnNewton(root, scale);
// magnitude*ln(x^(1/magnitude))
return BigDecimal.valueOf(magnitude).multiply(lnRoot)
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}
}
/**
* Compute the natural logarithm of x to a given scale, x > 0.
* Use Newton's algorithm.
*/
private static BigDecimal lnNewton(BigDecimal x, int scale)
{
int sp1 = scale + 1;
BigDecimal n = x;
BigDecimal term;
// Convergence tolerance = 5*(10^-(scale+1))
BigDecimal tolerance = BigDecimal.valueOf(5)
.movePointLeft(sp1);
// Loop until the approximations converge
// (two successive approximations are within the tolerance).
do {
// e^x
BigDecimal eToX = exp(x, sp1);
// (e^x - n)/e^x
term = eToX.subtract(n)
.divide(eToX, sp1, BigDecimal.ROUND_DOWN);
// x - (e^x - n)/e^x
x = x.subtract(term);
Thread.yield();
} while (term.compareTo(tolerance) > 0);
return x.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}
/**
* Compute the integral root of x to a given scale, x >= 0.
* Use Newton's algorithm.
* @param x the value of x
* @param index the integral root value
* @param scale the desired scale of the result
* @return the result value
*/
public static BigDecimal intRoot(BigDecimal x, long index,
int scale)
{
// Check that x >= 0.
if (x.signum() < 0) {
throw new IllegalArgumentException("x < 0");
}
int sp1 = scale + 1;
BigDecimal n = x;
BigDecimal i = BigDecimal.valueOf(index);
BigDecimal im1 = BigDecimal.valueOf(index-1);
BigDecimal tolerance = BigDecimal.valueOf(5)
.movePointLeft(sp1);
BigDecimal xPrev;
// The initial approximation is x/index.
x = x.divide(i, scale, BigDecimal.ROUND_HALF_EVEN);
// Loop until the approximations converge
// (two successive approximations are equal after rounding).
do {
// x^(index-1)
BigDecimal xToIm1 = intPower(x, index-1, sp1);
// x^index
BigDecimal xToI =
x.multiply(xToIm1)
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);
// n + (index-1)*(x^index)
BigDecimal numerator =
n.add(im1.multiply(xToI))
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);
// (index*(x^(index-1))
BigDecimal denominator =
i.multiply(xToIm1)
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);
// x = (n + (index-1)*(x^index)) / (index*(x^(index-1)))
xPrev = x;
x = numerator
.divide(denominator, sp1, BigDecimal.ROUND_DOWN);
Thread.yield();
} while (x.subtract(xPrev).abs().compareTo(tolerance) > 0);
return x;
}
/**
* Compute e^x to a given scale.
* Break x into its whole and fraction parts and
* compute (e^(1 + fraction/whole))^whole using Taylor's formula.
* @param x the value of x
* @param scale the desired scale of the result
* @return the result value
*/
public static BigDecimal exp(BigDecimal x, int scale)
{
// e^0 = 1
if (x.signum() == 0) {
return BigDecimal.valueOf(1);
}
// If x is negative, return 1/(e^-x).
else if (x.signum() == -1) {
return BigDecimal.valueOf(1)
.divide(exp(x.negate(), scale), scale,
BigDecimal.ROUND_HALF_EVEN);
}
// Compute the whole part of x.
BigDecimal xWhole = x.setScale(0, BigDecimal.ROUND_DOWN);
// If there isn't a whole part, compute and return e^x.
if (xWhole.signum() == 0) return expTaylor(x, scale);
// Compute the fraction part of x.
BigDecimal xFraction = x.subtract(xWhole);
// z = 1 + fraction/whole
BigDecimal z = BigDecimal.valueOf(1)
.add(xFraction.divide(
xWhole, scale,
BigDecimal.ROUND_HALF_EVEN));
// t = e^z
BigDecimal t = expTaylor(z, scale);
BigDecimal maxLong = BigDecimal.valueOf(Long.MAX_VALUE);
BigDecimal result = BigDecimal.valueOf(1);
// Compute and return t^whole using intPower().
// If whole > Long.MAX_VALUE, then first compute products
// of e^Long.MAX_VALUE.
while (xWhole.compareTo(maxLong) >= 0) {
result = result.multiply(
intPower(t, Long.MAX_VALUE, scale))
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
xWhole = xWhole.subtract(maxLong);
Thread.yield();
}
return result.multiply(intPower(t, xWhole.longValue(), scale))
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}
一个黑客小算法,非常适合大数字使用关系。以下是在以10为基数的情况下执行此操作的方法(您可以简单地将其转换为任何其他对数基数):log(AB) = log(A) + log(B)
计算答案中的小数位数。这是对数的组成部分,加一。示例:为 6,因为123456有 6 位数字。floor(log10(123456)) + 1
如果您只需要对数的整数部分,则可以在此处停止:只需从步骤1的结果中减去1即可。
要获得对数的小数部分,请将数字除以 ,然后使用(或其他方式;如果没有其他可用,请使用简单的序列近似)计算该对数的对数,并将其添加到整数部分。示例:获取 的小数部分,计算 ,并将其添加到步骤 1 的结果中:,即 。请注意,您基本上只是在大数字的前面加上一个小数点;在您的用例中,可能有一种很好的方法来优化这一点,对于非常大的数字,您甚至不需要费心去抓取所有数字 - 这是一个很好的近似值。10^(number of digits)
math.log10()
log10(123456)
math.log10(0.123456) = -0.908...
6 + -0.908 = 5.092
log10(123456)
log10(0.123)
log10(0.123456789)