如何实现中值堆

2022-09-01 01:41:58

就像 Max-heap 和 Min-heap 一样,我想实现一个 Median-heap 来跟踪给定整数集的中位数。API 应具有以下三个功能:

insert(int)  // should take O(logN)
int median() // will be the topmost element of the heap. O(1)
int delmedian() // should take O(logN)

我想使用数组(a)实现来实现堆,其中数组索引k的子级存储在数组索引2 * k和2 * k + 1中。为方便起见,数组开始从索引 1 填充元素。这就是我到目前为止所拥有的:中位数堆将有两个整数来跟踪到目前为止插入的整数的数量,这些整数>当前中位数(gcm)和<当前中位数(lcm)。

if abs(gcm-lcm) >= 2 and gcm > lcm we need to swap a[1] with one of its children. 
The child chosen should be greater than a[1]. If both are greater, 
choose the smaller of two.

另一种情况也是如此。我无法想出一种如何下沉和游泳元素的算法。我认为它应该考虑到这个数字与中位数的接近程度,所以像这样:

private void swim(int k) {
    while (k > 1 && absless(k, k/2)) {   
        exch(k, k/2);
        k = k/2;
    }
}

不过,我无法提出整个解决方案。


答案 1

您需要两个堆:一个最小堆和一个最大堆。每个堆包含大约一半的数据。最小堆中的每个元素都大于或等于中位数,而最大堆中的每个元素都小于或等于中位数。

当最小堆比最大堆多包含一个元素时,中位数位于最小堆的顶部。当最大堆比最小堆多包含一个元素时,中位数位于最大堆的顶部。

当两个堆包含相同数量的元素时,元素的总数为偶数。在这种情况下,您必须根据您对中位数的定义进行选择:a)两个中间元素的平均值;b) 两者中较大的一个;c) 较小者;d)随机选择两者中的任何一个...

每次插入时,将新元素与堆顶部的元素进行比较,以便确定插入位置。如果新元素大于当前中位数,它将进入最小堆。如果它小于当前中位数,它将转到最大堆。然后,您可能需要重新平衡。如果堆的大小相差多个元素,请从具有更多元素的堆中提取最小值/最大值,并将其插入到另一个堆中。

为了构造元素列表的中位数堆,我们应该首先使用线性时间算法并找到中位数。一旦知道中位数,我们就可以简单地根据中位数将元素添加到最小堆和最大堆中。不需要平衡堆,因为中位数会将元素的输入列表分成相等的一半。

如果提取元素,则可能需要通过将一个元素从一个堆移动到另一个堆来补偿大小变化。这样,您可以确保两个堆在任何时候都具有相同的大小或仅相差一个元素。


答案 2

这是一个 MedianHeap 的 java 实现,它是在上述 comocomocomocomo 的解释的帮助下开发的。

import java.util.Arrays;
import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Scanner;

/**
 *
 * @author BatmanLost
 */
public class MedianHeap {

    //stores all the numbers less than the current median in a maxheap, i.e median is the maximum, at the root
    private PriorityQueue<Integer> maxheap;
    //stores all the numbers greater than the current median in a minheap, i.e median is the minimum, at the root
    private PriorityQueue<Integer> minheap;

    //comparators for PriorityQueue
    private static final maxHeapComparator myMaxHeapComparator = new maxHeapComparator();
    private static final minHeapComparator myMinHeapComparator = new minHeapComparator();

    /**
     * Comparator for the minHeap, smallest number has the highest priority, natural ordering
     */
    private static class minHeapComparator implements Comparator<Integer>{
        @Override
        public int compare(Integer i, Integer j) {
            return i>j ? 1 : i==j ? 0 : -1 ;
        }
    }

    /**
     * Comparator for the maxHeap, largest number has the highest priority
     */
    private static  class maxHeapComparator implements Comparator<Integer>{
        // opposite to minHeapComparator, invert the return values
        @Override
        public int compare(Integer i, Integer j) {
            return i>j ? -1 : i==j ? 0 : 1 ;
        }
    }

    /**
     * Constructor for a MedianHeap, to dynamically generate median.
     */
    public MedianHeap(){
        // initialize maxheap and minheap with appropriate comparators
        maxheap = new PriorityQueue<Integer>(11,myMaxHeapComparator);
        minheap = new PriorityQueue<Integer>(11,myMinHeapComparator);
    }

    /**
     * Returns empty if no median i.e, no input
     * @return
     */
    private boolean isEmpty(){
        return maxheap.size() == 0 && minheap.size() == 0 ;
    }

    /**
     * Inserts into MedianHeap to update the median accordingly
     * @param n
     */
    public void insert(int n){
        // initialize if empty
        if(isEmpty()){ minheap.add(n);}
        else{
            //add to the appropriate heap
            // if n is less than or equal to current median, add to maxheap
            if(Double.compare(n, median()) <= 0){maxheap.add(n);}
            // if n is greater than current median, add to min heap
            else{minheap.add(n);}
        }
        // fix the chaos, if any imbalance occurs in the heap sizes
        //i.e, absolute difference of sizes is greater than one.
        fixChaos();
    }

    /**
     * Re-balances the heap sizes
     */
    private void fixChaos(){
        //if sizes of heaps differ by 2, then it's a chaos, since median must be the middle element
        if( Math.abs( maxheap.size() - minheap.size()) > 1){
            //check which one is the culprit and take action by kicking out the root from culprit into victim
            if(maxheap.size() > minheap.size()){
                minheap.add(maxheap.poll());
            }
            else{ maxheap.add(minheap.poll());}
        }
    }
    /**
     * returns the median of the numbers encountered so far
     * @return
     */
    public double median(){
        //if total size(no. of elements entered) is even, then median iss the average of the 2 middle elements
        //i.e, average of the root's of the heaps.
        if( maxheap.size() == minheap.size()) {
            return ((double)maxheap.peek() + (double)minheap.peek())/2 ;
        }
        //else median is middle element, i.e, root of the heap with one element more
        else if (maxheap.size() > minheap.size()){ return (double)maxheap.peek();}
        else{ return (double)minheap.peek();}

    }
    /**
     * String representation of the numbers and median
     * @return 
     */
    public String toString(){
        StringBuilder sb = new StringBuilder();
        sb.append("\n Median for the numbers : " );
        for(int i: maxheap){sb.append(" "+i); }
        for(int i: minheap){sb.append(" "+i); }
        sb.append(" is " + median()+"\n");
        return sb.toString();
    }

    /**
     * Adds all the array elements and returns the median.
     * @param array
     * @return
     */
    public double addArray(int[] array){
        for(int i=0; i<array.length ;i++){
            insert(array[i]);
        }
        return median();
    }

    /**
     * Just a test
     * @param N
     */
    public void test(int N){
        int[] array = InputGenerator.randomArray(N);
        System.out.println("Input array: \n"+Arrays.toString(array));
        addArray(array);
        System.out.println("Computed Median is :" + median());
        Arrays.sort(array);
        System.out.println("Sorted array: \n"+Arrays.toString(array));
        if(N%2==0){ System.out.println("Calculated Median is :" + (array[N/2] + array[(N/2)-1])/2.0);}
        else{System.out.println("Calculated Median is :" + array[N/2] +"\n");}
    }

    /**
     * Another testing utility
     */
    public void printInternal(){
        System.out.println("Less than median, max heap:" + maxheap);
        System.out.println("Greater than median, min heap:" + minheap);
    }

    //Inner class to generate input for basic testing
    private static class InputGenerator {

        public static int[] orderedArray(int N){
            int[] array = new int[N];
            for(int i=0; i<N; i++){
                array[i] = i;
            }
            return array;
        }

        public static int[] randomArray(int N){
            int[] array = new int[N];
            for(int i=0; i<N; i++){
                array[i] = (int)(Math.random()*N*N);
            }
            return array;
        }

        public static int readInt(String s){
            System.out.println(s);
            Scanner sc = new Scanner(System.in);
            return sc.nextInt();
        }
    }

    public static void main(String[] args){
        System.out.println("You got to stop the program MANUALLY!!");        
        while(true){
            MedianHeap testObj = new MedianHeap();
            testObj.test(InputGenerator.readInt("Enter size of the array:"));
            System.out.println(testObj);
        }
    }
}