为了扩展@jtravaglini,YARN/MapReduce 2的首选使用方式如下:DistributedCache
在驱动程序中,使用Job.addCacheFile()
public int run(String[] args) throws Exception {
Configuration conf = getConf();
Job job = Job.getInstance(conf, "MyJob");
job.setMapperClass(MyMapper.class);
// ...
// Mind the # sign after the absolute file location.
// You will be using the name after the # sign as your
// file name in your Mapper/Reducer
job.addCacheFile(new URI("/user/yourname/cache/some_file.json#some"));
job.addCacheFile(new URI("/user/yourname/cache/other_file.json#other"));
return job.waitForCompletion(true) ? 0 : 1;
}
在映射器/化简器中,覆盖该方法:setup(Context context)
@Override
protected void setup(
Mapper<LongWritable, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
if (context.getCacheFiles() != null
&& context.getCacheFiles().length > 0) {
File some_file = new File("./some");
File other_file = new File("./other");
// Do things to these two files, like read them
// or parse as JSON or whatever.
}
super.setup(context);
}