示例有向图和拓扑排序代码 [已关闭]
2022-09-02 03:06:41
有谁知道我在哪里可以获得有向图的示例实现和对有向图执行拓扑排序的示例代码?(最好是Java)
有谁知道我在哪里可以获得有向图的示例实现和对有向图执行拓扑排序的示例代码?(最好是Java)
以下是维基百科页面上拓扑排序的第一个算法的简单实现:
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Iterator;
public class Graph {
static class Node{
public final String name;
public final HashSet<Edge> inEdges;
public final HashSet<Edge> outEdges;
public Node(String name) {
this.name = name;
inEdges = new HashSet<Edge>();
outEdges = new HashSet<Edge>();
}
public Node addEdge(Node node){
Edge e = new Edge(this, node);
outEdges.add(e);
node.inEdges.add(e);
return this;
}
@Override
public String toString() {
return name;
}
}
static class Edge{
public final Node from;
public final Node to;
public Edge(Node from, Node to) {
this.from = from;
this.to = to;
}
@Override
public boolean equals(Object obj) {
Edge e = (Edge)obj;
return e.from == from && e.to == to;
}
}
public static void main(String[] args) {
Node seven = new Node("7");
Node five = new Node("5");
Node three = new Node("3");
Node eleven = new Node("11");
Node eight = new Node("8");
Node two = new Node("2");
Node nine = new Node("9");
Node ten = new Node("10");
seven.addEdge(eleven).addEdge(eight);
five.addEdge(eleven);
three.addEdge(eight).addEdge(ten);
eleven.addEdge(two).addEdge(nine).addEdge(ten);
eight.addEdge(nine).addEdge(ten);
Node[] allNodes = {seven, five, three, eleven, eight, two, nine, ten};
//L <- Empty list that will contain the sorted elements
ArrayList<Node> L = new ArrayList<Node>();
//S <- Set of all nodes with no incoming edges
HashSet<Node> S = new HashSet<Node>();
for(Node n : allNodes){
if(n.inEdges.size() == 0){
S.add(n);
}
}
//while S is non-empty do
while(!S.isEmpty()){
//remove a node n from S
Node n = S.iterator().next();
S.remove(n);
//insert n into L
L.add(n);
//for each node m with an edge e from n to m do
for(Iterator<Edge> it = n.outEdges.iterator();it.hasNext();){
//remove edge e from the graph
Edge e = it.next();
Node m = e.to;
it.remove();//Remove edge from n
m.inEdges.remove(e);//Remove edge from m
//if m has no other incoming edges then insert m into S
if(m.inEdges.isEmpty()){
S.add(m);
}
}
}
//Check to see if all edges are removed
boolean cycle = false;
for(Node n : allNodes){
if(!n.inEdges.isEmpty()){
cycle = true;
break;
}
}
if(cycle){
System.out.println("Cycle present, topological sort not possible");
}else{
System.out.println("Topological Sort: "+Arrays.toString(L.toArray()));
}
}
}
我基于维基百科页面上的第二个替代方案进行了实现:http://en.wikipedia.org/wiki/Topological_sorting
public class Graph {
Hashtable<Node, ArrayList<Node>> adjList = new Hashtable<Node, ArrayList<Node>>();
ArrayList<Node> nodes = new ArrayList<Node>();
LinkedList<Node> topoSorted;
public Graph() {}
public void add(Node node) {
if (adjList.contains(node)) {
return;
} else {
adjList.put(node, new ArrayList<Node>());
nodes.add(node);
}
}
public void addNeighbor(Node from, ArrayList<Node> list) {
for (Node to: list) {
addNeighbor(from, to);
}
}
public void addNeighbor(Node from, Node to) {
if (!adjList.containsKey(from)) {
add(from);
}
if (!adjList.containsKey(to)) {
add(to);
}
adjList.get(from).add(to);
to.inDegree++;
to.inNodes.add(from);
}
public void remove(Node node) {
for (Node n: nodes) {
for (Node x: adjList.get(n)) {
if (x.equals(node)) removeNeighbor(n, x);
}
}
adjList.remove(node);
nodes.remove(node);
}
public void removeNeighbor(Node from, Node to) {
adjList.get(from).remove(to);
to.inDegree--;
to.inNodes.remove(from);
}
public void resetVisited() {
for (Node node: nodes) {
node.visited = false;
}
}
public boolean hasEdge(Node from, Node to) {
return adjList.get(from).contains(to) ? true : false;
}
/**
* for DAGS only
* @throws Exception
*/
public void topologicalSort() throws Exception {
/* L <-- Empty list that will contain the sorted elements */
topoSorted = new LinkedList<Node>();
/* Use set to keep track of permanently visited nodes
* in constant time. Does have pointer overhead */
HashSet<Node> visited = new HashSet<Node>();
/* while there are unmarked nodes do */
for (Node n: nodes) {
/* select an unmarked node n
* visit(n)
*/
if (!visited.contains(n)) visit(n, visited);
}
}
/* function: visit(node n) */
public void visit(Node node, HashSet<Node> set) throws Exception {
/* if n has a temporary mark then stop (not a DAG) */
if (node.visited) {
throw new Exception("graph cyclic");
/* if n is not marked (i.e. has not been visited) then... */
} else {
/* mark n temporarily [using boolean field in node]*/
node.visited = true;
/* for each node m with an edge n to m do... */
for (Node m: adjList.get(node)) {
/* visit(m) */
if (!set.contains(m)) visit(m, set);
}
/* mark n permanently */
set.add(node);
/* unmark n temporarily */
node.visited = false;
/* add n to head of L */
topoSorted.addFirst(node);
}
}
public void printGraph() {
for (Node node: nodes) {
System.out.print("from: " + node.value + " | to: ");
for (Node m: adjList.get(node)) {
System.out.print(m.value + " ");
}
System.out.println();
}
}
public void instantiateGraph() {
Node seven = new Node("7");
Node five = new Node("5");
Node three = new Node("3");
Node eleven = new Node("11");
Node eight = new Node("8");
Node two = new Node("2");
Node nine = new Node("9");
Node ten = new Node("10");
addNeighbor(seven, eleven);
addNeighbor(seven, eight);
addNeighbor(five, eleven);
addNeighbor(three, eight);
addNeighbor(three, ten);
addNeighbor(eleven, two);
addNeighbor(eleven, nine);
addNeighbor(eleven, ten);
addNeighbor(eight, nine);
try {
topologicalSort();
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
for (Node node: topoSorted) {
System.out.print(node.value + " ");
}
}
public class Node {
String value;
boolean visited = false;
int inDegree = 0;
ArrayList<Node> inNodes = new ArrayList<Node>();
public Node (String value) {
this.value = value;
}
}
public static void main(String[] args) {
Graph g = new Graph();
g.instantiateGraph();
}
}